
Supply Chain Disruptions, Time to Build,
and the Business Cycle∗

Matthias Meier†

March 15, 2020

Abstract

We provide new evidence that (i) time to build is volatile and countercyclical,
and that (ii) supply chain disruptions lengthen time to build. Motivated by these
findings, we develop a general equilibrium model in which heterogeneous firms face
non-convex adjustment costs and multi-period time to build. In the model, supply
chain disruptions lengthen time to build. Calibrating the model to US micro data,
we show that disruptions, which lengthen time to build by 1 month, depress GDP by
1% and aggregate TFP by 0.2%. Structural vector autoregressions corroborate the
quantitative importance of supply chain disruptions.

Keywords: Time to build, supply chain disruptions, business cycles

∗I am extremely thankful for the advice and support of Christian Bayer and Keith Kuester. Special thanks
go to Gianluca Violante for advice and for sponsoring my visits at NYU. I thank Klaus Adam, Benjamin Born,
Katka Borovičkovà, Jarda Borovička, Giovanni Gallipoli, Daniel Greenwald, Boyan Jovanovic, Greg Kaplan,
Moritz Kuhn, Ben Moll, Morten Ravn, Markus Riegler, Felipe Valencia, Venky Venkateswaran, and Jürgen
von Hagen, and numerous seminar participants for useful comments at various stages of this project. I thank
Christoph Bode and Michael Westerburg for generously sharing their data on risk topics. Financial support
from the Bonn Graduate School of Economics, the Institute for Macroeconomics and Econometrics and the
Institute for International Economic Policy at the University of Bonn, and the UniCredit & Universities
Foundation is gratefully acknowledged.

† Universität Mannheim, Department of Economics, Block L7, 3-5, 68161 Mannheim, Germany; E-mail:
m.meier@uni-mannheim.de

1

mailto:m.meier@uni-mannheim.de


1 Introduction

Capital goods are complex and specific. An assembly line, for example, consists of many
elements that all need to fit together: conveyor belts, robotic arms working along these
belts, and the concrete foundation that supports the machines. In addition, capital goods
are manufactured to the specific needs of an investing firm. Because of complexity and
specificity, we observe a non-trivial time lag between the order and shipment of capital
goods.1 This delivery lag of capital goods, commonly labeled time to build, is assumed
constant in modern business cycle theory.2

Capital goods are not only complex and specific, but also characterized by long supply
chains. In fact, many intermediate goods, such as robotic arms, are themselves produced
from intermediate goods.3 Long supply chains are particularly vulnerable to disruptions,
and disruptions may lengthen time to build. The sources of supply chain disruptions are
manifold. Natural disasters can destroy establishments and block transportation routes.
Changes in taxes or tariffs may lead to the re-organization of supply chains. Worker in
production or transport go on strikes. Terror attacks and contagious diseases inhibit the
flow of intermediate goods.

In the present paper, we document countercyclical variation in time to build and provide
firm-level evidence that disruptions to the capital supply chain lengthen time to build.
This novel empirical evidence motivates us to ask whether capital supply chain disruptions
are quantitatively important for business cycles. We develop a heterogeneous firm general
equilibrium model, that allows for multi-period time to build, and in which supply chain
disruptions lengthen time to build. Calibrating the model to US micro data, we find that
disruptions have sizable macroeconomic effects. A shock that lengthens time to build by one
month lowers GDP by up to 1%.

To measure time to build, we use both aggregate and firm-level data on the order backlog
of capital good producers from 1970 until 2016. We define time to build as the duration
that new orders remain unfilled in the order books of capital good producers. Time to
build exhibits substantial fluctuations over time, from three months to more than a year. In
both aggregate and firm-level data, these fluctuations in time to build are countercyclical.
Addressing various concerns in the measurement of time to build does not change this finding.

A possible driver of time to build fluctuations are disruptions in the supply chain of

1Relatedly, Belsley (1969) observes that most capital goods are produced to order, reflecting capital
specificity, whereas consumption goods are typically produced to stock.

2Kydland and Prescott (1982) assumes four quarters time to build, but the standard assumption quickly
shifted to one quarter, see, e.g., Prescott (1986) or Smets and Wouters (2007).

3Relatedly, data from Antras and Chor (2013) shows that capital good sectors are highly downstream,
meaning they are relatively distant from primary factors of production.
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capital producers which delay the supply of intermediate goods. However, whether or not
such disruptions lengthen time to build is theoretically ambiguous. It depends on the buffer
stock of inventories of intermediate goods, on the costs of modifying outstanding orders for
capital goods, and on how easily the affected intermediate goods can be substituted. Using
firm-level data, we show that supply chain disruptions, identified through natural disasters,
do lengthen the time to build of the affected capital good producers.

Motivated by the empirical evidence, we develop a heterogeneous firm general equilibrium
model. The model distinguishes between firms that supply capital and firms that demand
capital. On the demand side, firms produce final goods by combining labor and specific
capital. These final good producers invest in capital by signing order contracts with engi-
neering firms. The engineering firms devise blueprints and search for suppliers of the required
intermediate goods on a frictional market.4 After the engineering firm matches with a
supplier, the ordered capital goods are produced and delivered. Time to build arises from
matching frictions between engineering firms and suppliers. In this setup, supply chain
disruptions can be modeled as negative matching efficiency shocks or as positive shocks to
the costs of suppliers. Both types of shocks lengthen lengthen time to build in equilibrium.
Ultimately, their effects on the rest of the model economy are indistinguishable from each
other, and our quantitative analysis focuses on matching efficiency shocks. In addition to
the endogenous time to build friction, investment is partially irreversible, which gives rise to
lumpy investment and wait-and-see behavior.

In the model, supply chain disruptions are contractionary through two channels. First,
a delay in the delivery of outstanding orders reduces contemporaneous investment and thus
production. Second, longer time to build worsens the alignment between firm-specific produc-
tivity and capital. A longer waiting time raises the ex-ante uncertainty about productivity
in the usage period of the ordered capital goods. As a result, firms invest less frequently.
Even if they do invest, a longer waiting time implies that ex-ante ordered investments tend
to be further away from their ex-post optimal levels. Hence, longer time to build exacerbates
capital misallocation across firms and aggregate total factor productivity (TFP) falls.

The model is calibrated to US data and jointly targets moments of the investment rate
distribution and aggregate fluctuations in time to build. To solve the model, we adapt the
Reiter (2009) method. In the calibrated model, supply chain disruptions that raise time
to build by one month cause a sharp 8% drop in investment. The direct effect of delayed
delivery is important for the short-term effects. Aggregate output also features a sharp initial
drop of 1%, but reverts back to steady state slowly after the first quarter. The persistence is

4Previous work that incorporates frictional capital markets into business cycle models includes Kurmann
and Petrosky-Nadeau (2007) and Ottonello (2015).
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partly due to a gradual response in aggregate TFP, which falls but attains its peak response
of 0.22% only 6 quarters after the shock. This reflects the indirect effect of the disruption
shock, which operates through increased capital misallocation, and explains about half of the
medium-term response in aggregate output. We further use the model to study the extent
of post-war business cycle fluctuations that can be attributed to supply chain disruptions.
Supply chain disruptions explain up to half of the decline in output and investment during
the early 1990s recession and the Great Recession.

Finally, we use a structural vector autoregressive (VAR) model to corroborate the quanti-
tative importance of supply chain disruptions, which we identify through timing restrictions.
In medium-scale VAR models fitted to US data, we find that disruptions have large macro-
economic impact. A one standard deviation shock lowers GDP by 0.5% and aggregate TFP
by 1.0%.

The remainder of this paper is organized as follows. After a brief review of the related
literature, Section 2 presents the empirical evidence. Section 3 proposes an analytical frame-
work to study the misallocation effects of time to build. Section 4 develops the full business
cycle model. Section 5 presents the calibration and quantitative results of the model.
Section 6 provides VAR evidence. Section 7 concludes and an appendix follows.

Related Literature

The notion of time as a factor in the production of capital goods has deep roots in the
history of economic research going back to Ricardo (1817) and von Böhm-Bawerk (1891).
Nonetheless, whether or not time to build fluctuates with the business cycle has not been
firmly established. Using aggregate data, Zarnowitz (1962) documents procyclical time to
build between 1946 and 1959, while more recently Nalewaik and Pinto (2015) documents
countercylical time to build post-1968.5 We reconfirm the latter finding in both aggregate
and firm-level data. Firm-level data helps us to reject the concern that measured time
to build fluctuations are primarily driven by sales fluctuations. We focus on equipment
capital goods, which constitutes the bulk of non-residential investment. For nonresidential
construction, Brooks (2000) documents acyclical time to build. For residential construction,
Oh and Yoon (2020) documents countercyclical time to build.

Another strand of related literature studies the role of production networks for the
propagation of shocks. Barrot and Sauvagnat (2016), Carvalho et al. (2016), and Boehm
et al. (2018) study the propagation of natural disasters. While these papers focus on sales
responses, another important consequence of natural disasters are time delays, see Hicks

5According to Popkin (1965), procyclical measured time to build in the early post-WWII period may be
due to large demand for military equipment around the Korean War.
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(1970). We contribute to this literature by showing that upstream disruptions lengthen time
to build. In our model, the indirect effects of longer time to build through capital misallo-
cation are as important as the direct quantity effects. Relatedly, Greenwood et al. (1988),
Fisher (2006), and Justiniano et al. (2010) study investment-specific technology shocks.
Supply chain disruptions in our model can be considered a novel type of such technology
shocks. Disruptions operate primarily through delivery delays, while the technology shocks in
the preceding literature operate through the investment price. Also related is a management
literature on supply chain disruptions. E.g., Hendricks and Singhal (2005) and Westerburg
and Bode (2018) study returns after disruptions and the role of mitigation strategies.

Finally, this paper relates to a literature that studies capital misallocation over the
business cycle. Eisfeldt and Rampini (2006) provides empirical evidence that capital becomes
more misallocated during recessions. Capital misallocation is a potent transmission mech-
anism for a variety of shocks: e.g., aggregate productivity shocks, see Khan and Thomas
(2008) and Bachmann et al. (2013), financial shocks, see Khan and Thomas (2013), and
uncertainty shocks, see Bloom (2009). Similar to the transmission of uncertainty shocks in
Bloom (2009), supply chain disruptions increase the real option value of waiting.

2 Empirical evidence

We establish that time to build – the time gap between order and delivery of capital goods
– is countercylical, and that capital supply chain disruptions lengthen time to build.

2.1 Countercyclical fluctuations in time to build

Data. We measure time to build using data on the order books of capital good producers.
To ensure a broad empirical basis, we use both aggregate and firm-level data.

We use aggregate data based on the Manufacturers’ Shipments, Inventories, and Orders
(M3) Survey, which is maintained by the US Census. The survey covers two third of manufac-
turers with annual sales above 500 million USD and some smaller manufacturers to improve
sectoral coverage. The M3 survey is most prominently used to compute quarterly investment
by the Bureau of Economic Analysis.6 We focus on the non-defense equipment good sector,
for which the Census provides a publicly available monthly series of the order backlog and
shipment going back to 1968. Shipments (sales) is the value of goods delivered during the
month. A new order is a legally binding intention to buy for immediate or future delivery.
The survey records the value new orders net of order modifications, where modifications

6See Concepts and Methods of the U.S. National Income and Product Accounts (2014, ch. 3).
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include cancellations, adjustments, and price changes. The order backlog is the value of
orders (net of modifications) that have not yet fully passed through the sales account.

In addition, we use firm-level data from Compustat, which covers publicly listed US
corporations. Since 1970, SEC regulation requires these corporations to disclose the value
of their order backlog in their annual 10-K filings.7 Compustat data on order backlogs has
been used to predict firm performance, both by financial analysts and in academic research,
e.g., Lev and Thiagarajan (1993). We define capital good producers as firms with SIC codes
between 35–38. This closely matches the definition of equipment goods in the M3 survey.

Time to build measurement. We measure time to build, the time gap between the
order and delivery of capital goods, as the duration that new orders remain unfilled in the
order books of capital good producers. Let St denote the aggregate flow value of capital
good producers’ sales, and Bt the aggregate stock value of backlogged orders of capital good
producers at the beginning of the period. Our baseline measure of time to build is the
backlog ratio

TTBt ≡ Bt

St

. (2.1)

Using the backlog ratio as measure of time to build dates back to Holt et al. (1960) and
Zarnowitz (1962). Absent sales fluctuations, the backlog ratio exactly captures the (sales-
weighted) average time between order and delivery if outstanding orders are shipped according
to a first-in-first-out protocol. Fluctuations in aggregate and firm-level sales can drive a
wedge between average time to build and the backlog ratio. We revisit the role of fluctua-
tions in firm-level sales toward the end of this subsection. To study the role of fluctuations in
aggregate sales, we propose an alternative time to build measure. Instead of computing the
duration of a new order in the backlog from current sales, we use future sales realizations.
We compute time to build as the number of periods it takes until the current order backlog is
exhausted by future realized sales, and linear interpolate sales in between periods to obtain
fractions of periods. Formally,

T̃ TBt ≡
{
interpolated months of realized future sales until Bt is depleted

}
. (2.2)

Using the monthly aggregate data released by the Census, we construct both the backlog
ratio and the alternative time to build measure in (2.2). Using the annual firm-level data, we
construct the backlog ratio at the aggregate and firm level. We clean the firm-level data as

7See SEC regulation §229 item 101(c) (VIII). 10-K filings on order backlogs are subject to audits, see
Statement of Auditing Standards AU §550.
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follows. We keep firms in SIC sectors 35–38 and drop firm-year observations if sales or the
order backlog are missing, zero, or negative. It is an accounting identity that the aggregate
backlog ratio equals the weighted mean of firm-level backlog ratios

TTBt =
∑

j

wjt · TTBjt, (2.3)

where firm j’s weight is its sales shares, wjt = Sjt/St, and TTBjt = Bjt/Sjt. We discard
firm-quarter observations with TTBjt below 0.1 months or above 10 years.

Time to build in aggregate data. Figure 1 shows the evolution of time to build during
the last five decades. The upper panel is based on Census M3 data. Time to build, measured
by the backlog ratio, fluctuates between three and ten months. These fluctuations are
countercyclical. The correlation of quarterly real GDP growth with log time to build is
-0.28 and the correlation with time to build growth is -0.20. In addition, time to build
is longest during recessions periods. The alternative time to build series in (2.2) closely
matches the backlog ratio in Figure 1, and it has almost the same correlation with the
business cycle. This is primarily because the monthly sales series has an auto-correlation
close to unity, 0.995 to be precise. Hence, current sales and future sales differ by relatively
little at time horizons between three to ten months. The fact the two time to build series
are almost identical invalidates the concern that the countercyclicality of the backlog ratio
is a statistical artefact of not capturing fluctuations in aggregate sales.

From a statistical viewpoint, the fluctuations in the backlog ratio are driven by fluctua-
tions in sales and backlog of equipment goods. Figure 7 in the Appendix plots the time series
of aggregate order backlog, sales, and new orders based on Census M3 data. These series are
connected through the law of motion, Bt+1 = Bt − St + Nt, where Nt denotes new orders.
By far the most volatile are new orders, while sales is somewhat less volatile than the order
backlog.8 While new orders are procyclical, sales and order backlog are lagged procyclical.9

The fact that sales of capital goods is lagged procyclical is little surprising in the presence
of time to build. What is more surprising is that the order backlog is not countercyclical.
Why do capital good producers not deplete their order backlog during recessions in order
to smooth sales? A possible explanation is that firms cannot reduce their backlog during
recessions because of supply shocks.

8The standard deviation of quarterly growth rates are 3.2% for sales, 3.7% for backlog, and 10.0% for
new orders.

9The correlation of new orders growth is largest with contemporaneous real GDP growth (in contrast to
real GDP growth of the preceding and succeeding 8 quarters). For sales and backlog growth the correlation
is largest with real GDP growth lagged by 1 and 4 quarters, respectively.
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Figure 1: Time to build

(a) Monthly aggregate data
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Notes: The solid line in panel (a) is the order backlog ratio to monthly shipments for non-defense
equipment goods. The dashed line is the number of months of future sales realizations that are
required to deplete the current order backlog, linearly interpolating between months. In panel (b),
the solid line shows the sales-weighted mean across firms. The dashed line is the sales-weighted
mean backlog ratio when fixing firm-specific sales weights based on sales in the year 2000. Shaded,
gray areas indicate NBER recession dates.
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Time to build in firm-level data. The lower panel of Figure 1 shows the evolution of
time to build based on firm-level data. The backlog ratio fluctuates substantially and tends
to peak during recessions, consistent with the aggregate data. Time to build in the firm-level
data is also negatively correlated with GDP growth. The correlation of annual real GDP
growth with log time to build is -0.45 and the correlation with time to build growth is -0.52.

The aggregate backlog ratio is equivalent to the sales-weighted mean firm-level backlog
ratio, see (2.3). Fluctuations in the aggregate backlog ratio are potentially driven by cyclical
changes in the sales composition. To be more precise, suppose the sales of capital goods
with higher average time to build were less volatile over the business cycle than the sales
of capital goods with lower average time to build. Then the aggregate backlog ratio would
be countercyclical even if the firm-specific backlog ratios are constant over the cycle. We
address this concern in two ways.

First, we study the evolution of the aggregate backlog ratio when keeping the firm-specific
sales weights in (2.3) fixed over time. We assign fixed sales weights according to firm-level
sales in the year 2000. This means we effectively drop firms without a sales observation
in 2000.10 The dashed line in the lower panel of Figure 1 shows the time series evolution
of the ‘fixed sales weights’ backlog ratio. The series is remarkably similar to the baseline
backlog ratio. In addition, the business cycle correlation is fairly unchanged under fixed
sales weights.11 These findings suggest that shifts in the sales composition toward firms with
higher average time to build are unlikely the reason for countercyclical time to build.

Second, we decompose changes in aggregate time to build into three contributing factors.
Based on (2.3), we propose the following decomposition

∆TTBt =
∑

j

wjt−1 · ∆TTBjt +
∑

j

∆wjt · TTBjt−1 +
∑

j

∆wjt · ∆TTBjt. (2.4)

The first term captures changes in firm-level time to build, the second term changes in the
sales shares, and the third term directed change. The business cycle correlation of ∆TTBt is
mostly captured by the first term, whereas the other two terms are less correlated with the
cycle.12 This reconfirms the finding under fixed sales weights in Figure 1. Changes in the
firm-specific backlog ratio rather than changes in sales are central for understanding counter-
cyclical movements in aggregate time to build. We further apply a variance decomposition
to (2.4). The variance of the first term accounts for 38% of the variance in ∆TTBt. If we

10The results are robust to fixing sales weights at year 1995 or 2005 sales.
11The correlation of annual real GDP growth with the log fixed-weights backlog ratio -0.43 and the

correlation with time to build growth under fixed weights is -0.39.
12The correlation with annual real GDP growth is -0.41 for ∆TTBt, -0.42 for the first term, -0.22 for the

second term, and -0.02 for the third term.
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add the covariance between the first and the second/third term, the first terms accounts for
55% of the variance in ∆TTBt. The variance of the second term accounts for most of the
remaining variance in ∆TTBt.

2.2 Supply chain disruptions and time to build

We provide firm-level evidence that time to build lengthens after a supplier is hit by a natural
disaster, and after periods in which annual reports describe increased adverse supply risks.

Supply chains and natural disasters. We think of supply chain disruptions as shocks
that delay the supply of intermediate goods. However, whether or not such disruptions
lengthen time to build is theoretically ambiguous. If capital good producers hold sufficient
inventory of intermediate goods time to build may not respond to disruptions. Similarly,
time to build may not respond if producers can easily and quickly find substitutes for the
affected intermediate goods. However, Barrot and Sauvagnat (2016) and Boehm et al. (2018)
show that intermediate goods are barely substituted in the short term. They also document
an adverse sales response to disruptions, which suggests insufficient inventory holdings.

To identify the impact of supply chain disruptions on time to build, we use an estima-
tion strategy similar to Barrot and Sauvagnat (2016), who study the effect supply chain
disruptions mainly on sales. We use county-level data on natural disasters obtained from
the SHELDUS database. We focus on major disasters defined by an economic damage above
one billion USD (in 2013 prices). 41 such major disasters occurred between 1980 and 2013.
We link disasters to firms through the county location of firms’ headquarters.13 We further
use the Compustat Segment files to identify firms’ principal customers in any given year.14

We regress log time to build of an individual capital good producing firm, measured by
the backlog ratio, on two types of dummy variables. The first one assumes the value one if
the capital good producer itself is located in a county that is hit by a major natural disaster.
The second type of dummy is one if at least one supplier to the capital good producer is
located in a disaster-hit county and if the county of the affected supplier is at least 300 miles
away from the linked capital good producer. We condition on sufficient distance to mitigate
the problem that supplier and capital good producer may be affected by the same change in
local demand conditions after the disaster. We further include firm and year fixed effects,
and, in some specifications, a dummy for tertiles of the number of suppliers.

13Of course, many firms in our sample have establishments in different locations. We expect that only
using the headquarter county will bias our results toward zero.

14More details on the disaster data and on the supplier-customer links can be found in Barrot and
Sauvagnat (2016). Our effective sample size is substantially smaller than theirs because we focus on capital
good producers and use annual instead of quarterly data.
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Table 1 summarizes the empirical findings. The second and third columns show that a
capital good producer’s time to build significantly increases by about 10% in years during
which a natural disaster hits either the capital good producer directly or at least one of
its suppliers. The effects are robust to controlling for the number of suppliers. The fourth
and fifth column present the results when adding one-year lags of both types of disaster
dummies. The point estimates that capture the time to build response to contemporaneous
natural disasters are about 9%, quite similar to the specification without lagged disasters.
In addition, the response of time to build to supply chain disruptions, i.e. natural disasters
hitting a supplier, remain statistically significant. Interestingly, the effects of disruptions

Table 1: Firm-level evidence on supply disruptions and time to build

Time to build (t) (in logs)

Disaster hits 0.100 0.087 0.093 0.081
at least one supplier (t) (0.043) (0.038) (0.041) (0.037)
Disaster hits 0.097 0.089
at least one supplier (t–1) (0.044) (0.041)

Disaster hits 0.108 0.107 0.094 0.094
capital good producer (t) (0.051) (0.055) (0.059) (0.061)
Disaster hits 0.048 0.047
capital good producer (t–1) (0.0453) (0.054)

Supply risk exposure (t–1) 0.029
(0.018)

Demand risk exposure (t–1) -0.033
(0.023)

Firm fixed effect Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes
Number of suppliers No Yes No Yes No
R2 0.0806 0.0824 0.0856 0.0876 0.140
Observations 23,446 20,789 3,136
Years 1980–2013 2006–2013

Notes: Columns 2-5 present the estimates from panel regressions of log time to build on dummies indi-
cating whether the firm itself or at least one of their suppliers is located in a county (at least 300 miles
away from the firm’s location) that is hit by a major natural disaster in the same year or the preceding
year. The last column presents the estimates of time to build on the number of distinct adverse supply
and demand risk topics described in the firm’s annual report of the preceding year. Standard errors are
clustered at the firm level and presented in parentheses.
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persist into the subsequent year. The effect of lagged supply chain disruptions are of similar
magnitude and statistical significance as the effect of contemporaneous disruptions.

Exposure to supply risk. To complement the empirical analysis, we study the effect
of broad categories of supply risks on time to build. Since 2005, SEC regulation requires
corporations to disclose their (self-assessed) exposures to important downside risks in the
risk section of their annual reports. Westerburg and Bode (2018) apply text learning to
extract supply and demand risk topics from these risk sections. Examples of adverse supply
risk exposures include:

“As we rely on a limited number of third parties to [..] supply required parts and materials, we
are exposed to significant supplier risks.”

“We are dependent on technology systems and third-party content that are beyond our control.”

“The impact of natural disasters could negatively impact our supply chain.”

Demand risks include market competition, product approvals, and market acceptance. Using
their data, the last column of Table 1 show the effects of supply and demand risk exposures
on time to build of capital good producers. After periods of heightened supply risk exposure,
time to build lengthens. The response is significant at the 10% level. This finding further
supports the notion that supply shocks affect time to build. Instead, heightened demand
risks shorten the capital producer’s time to build, albeit the effect is insignificant.

3 Analytical framework

We analytically characterize the effects of longer time to build on aggregate TFP through
capital misallocation in a stripped-down tractable model. This helps to build intuition and
to gauge the quantitative bite of the mechanism. The main model of this paper, introduced
in the subsequent section, is analytically intractable but richer in various dimensions.

The model is populated by a fixed mass of perfectly competitive firms. Firms are ex-ante
identical and use specific capital kjt and labor ℓjt to produce a homogeneous final good

yjt = xjtk
α
jtℓ

ν
jt, 0 < α + ν < 1. (3.1)

Idiosyncratic productivity, xjt, follows an AR(1) process in logs

log(xjt+1) = ρx log(xjt) + σxϵjt+1, 0 < ρx < 1, ϵjt+1
iid∼ N (0, 1). (3.2)
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Firms are price-takers, wt is the wage rate and rt the user cost of capital. Period profits are

πjt = xjtk
α
jtℓ

ν
jt − wtℓjt − rtkjt. (3.3)

Labor is adjusted every period and without frictions. Capital adjustment is subject to τ

periods time to build but no other adjustment friction. In period t, the firm needs to choose
how much capital to employ in period t + τ in order to maximize expected period t + τ

profits. This yields

kj,t,t+τ =
(

α

Et[rt+τ ]

) 1−ν
1−α−ν

(
ν

Et[wt+τ ]

) ν
1−α−ν

Et[x
1

1−ν

jt+τ ]
1−ν

1−α−ν . (3.4)

We study the aggregate implications of changes in time to build using comparative statics. In
steady state with τ periods time to build, the aggregate capital stock is Kτ =

∫
kj,t,t+τdj, and

aggregates Lτ , Yτ are constructed analogously. We define aggregate TFP as model-consistent
Solow residual, TFPτ ≡ log Yτ − α logKτ − ν logLτ , which can be simplified to

TFPτ =1
2

1
1 − α− ν

1
1 − ρ2

x

σ2
x − 1

2
α

(1 − ν)(1 − ν − α)
1 − ρ2τ

x

1 − ρ2
x

σ2
x. (3.5)

Qualitatively, longer time to build (τ) unambiguously lowers aggregate TFP. Quantitatively,
the TFP loss of time to build depends on three factors.15

a) The TFP loss grows in α as capital misallocation becomes more important for TFP.

b) The TFP loss grows in (α + ν) because optimal firm size increases more steeply in
productivity. As time to build prevents quick size adjustment, deviations from optimal
size and hence misallocation increases.

c) The TFP loss grows in ρx and σx because the productivity variance while waiting for
delivery, Vt[log xjt+τ ] = 1−ρ2τ

x

1−ρ2
x
σ2

x, increases, which raises capital misallocation.

To study the quantitative bite of capital misallocation, we set α, ν, ρx, and σx to match
the estimates in Cooper and Haltiwanger (2006). More details on the parameter estimates
and a brief survey of alternative estimates are provided in Appendix B. We then consider an
increase in time to build from five to six months, which is roughly a one standard deviation
increase beyond the mean of the series in Figure 1. One month longer time to build reduces

15Another factor is the capital-labor substitution elasticity. An elasticity of 0.5, consistent with the
evidence surveyed in Chirinko (2008), would further strengthen the quantitative impact of time to build on
aggregate TFP.
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aggregate TFP by 0.21%. To computed the GDP effects in general equilibrium, we need
to specify preferences. With additively separable preferences, U = C1−σ−1

1−σ
− ψL1+ϕ

1+ϕ
, the

log-change in aggregate GDP is ∆τ log Yτ = 1
1−ν

∆τTFPτ . The aggregate TFP loss then
translates into a GDP loss of 0.53%.

The TFP and GDP effects underline the quantitative bite of the mechanism. In the full
model we present next the effects may be smaller or larger. First, we have sofar focused
on the long-run effects, whereas the short-run effects are possibly smaller because capital
misallocation builds up gradually when idiosyncratic productivity is persistent. Second, this
analytical framework abstracts from capital adjustment frictions other than time to build.
Longer time to build raises the effective uncertainty of an investment project, and in response
firms may postpone capital adjustment which further raises capital misallocation.

4 Model

We develop a real business cycle model to study capital supply chain disruptions. In the
model, final good producers vary in their productivity and use specific capital. Investment
is partially irreversible and subject to time to build. Time to build arises from frictions
on the market for intermediate goods, which are used for capital good production. Supply
chain disruptions, which lengthen time to build, are modeled as capital-specific cost shocks
or shocks to the matching friction.

4.1 Households

The economy is populated by a unit measure of identical households that take prices as
given. The households value consumption Ct and leisure 1 − Lt, and the per-period time
endowment is 1. The households are mobile to supply labor across sectors of the economy.
They receive labor income wtLt and hold shares At in a mutual fund of all firms in the
economy. Shares are traded at price Pt and pay dividend Πt. The household problem is

max
{Ct,Lt,At+1}∞

t=0

E
∞∑

t=0
βtU(Ct, Lt) s.t. Ct + PtAt+1 = wtLt + (Pt + Πt)At. (4.1)

The first-order condition for shares yields the stochastic discount factor

Qt,t+1 = β
UC(Ct+1, Lt+1)
UC(Ct, Lt)

. (4.2)

by which firms discount future profits.
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4.2 Engineering firms and intermediate good suppliers

The capital supply side of the model is motivated by the empirical evidence in Section 2,
which shows that shocks to intermediate good suppliers propagate downstream to capital
good producers and lengthen time to build.

In the model, engineering firms (short: engineers) produce and receive order for specific
capital goods from final good producers. To produce capital, engineers devise blueprints
that specify the required intermediate goods. Intermediate good suppliers (short: suppliers)
produce these inputs and supply them to engineers on a frictional market. Think of a single
supplier as a shortcut for a network of suppliers that produce all the inputs required to
produce the ordered capital good. An engineer that is matched with a supplier receives the
required inputs, produces the ordered capital good and delivers it at the end of the period.

We assume a large mass of engineers and suppliers. Unmatched engineers and suppliers
are active, meaning they can match with the other side of the frictional market, only in
periods in which they incur fixed costs of operations. These costs are ξ overhead workers
for engineers and ξat for suppliers, where at is an exogenous cost parameter. The mass of
unmatched active engineers be Et and the mass of unmatched active suppliers be St. The
matching technology between engineers and suppliers is

Mt = mtE
η
t S

1−η
t , 0 < η < 1, (4.3)

where mt denotes exogenous matching efficiency. We define market tightness as θt = Et/St.
For an engineer, the probability of filling an order is qt = mtθ

η−1
t , and for a supplier the

matching probability is θtqt.
Let us next consider an engineer with an outstanding order of it units of capital goods.

When the engineer is matched with a supplier, the engineer purchases a quantity it of
intermediate goods at per-unit price pS

t . The supplier produces the intermediate goods from
final goods at unit marginal costs. The value of an unmatched and matched active supplier
are, respectively,

V S
t = −ξatwt + θtqtJ

S
t + (1 − θtqt)Et[Qt,t+1V

S
t+1], and JS

t = pS
t it − it. (4.4)

After receiving it intermediate goods, the engineer transforms them into it capital goods and
sells them at per-unit price pE

t to the final good producer from which it has received the offer.
The market for capital good orders is a competitive spot market, and engineers commit to
order contracts. Ordering final good producers can only hire one engineering firm in any
period of time. Thus, the number of engineers equals the number of orders. The value of an
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unmatched and matched active engineer are, respectively,

V E
t = −ξwt + qtJ

E
t + (1 − qt)Et[Qt,t+1V

E
t+1], and JE

t = pE
t it − pS

t it. (4.5)

There is free entry of suppliers and engineers are competitive. Hence,

V S
t = V E

t = 0. (4.6)

When matched, engineer and supplier split the match surplus by Nash bargaining over the
unit price pS

t , where ϕ is the engineer’s bargaining weight,

max
pS

t

(JE
t − V E

t )ϕ(JS
t − V S

t )1−ϕ, 0 < ϕ < 1. (4.7)

We have implicitly assumed that matches between engineers and suppliers are short-lived.
This assumption conforms with the notion that capital goods are specific and suppliers
represent a collection of suppliers. The assumption also avoids technical complications.16

The capital supply side of the model captures two types of supply chain shocks. Shocks
to supplier costs, at, and shocks to matching efficiency, mt. Both follow log AR(1) processes

log(at) = (1 − ρa) log(µa) + ρa log(at−1) + σaϵa
t , ϵa

t
iid∼ N (0, 1), (4.8)

log(mt) = (1 − ρm) log(µm) + ρm log(mt−1) + σmϵm
t , ϵm

t
iid∼ N (0, 1). (4.9)

Both at and mt affect the order filling probability qt and thereby time to build in equilibrium.
We discuss the equilibrium effects of at and mt in more detail at the end of this section.

Finally, we make a technical assumption that facilitates the numerical model solution.
Instead of one capital market, we assume there is a continuum of capital submarkets, all
of which are described by the above setup, and which only differ in their overhead cost
parameter ξ. The cross-sectional distribution of ξ-submarkets is described by the cdf G

of ξ, defined over support R+. When ordering specific capital goods, final good producers
randomly access one of these ξ-submarkets. It will later become clear that this setup implies
stochastic fixed capital adjustment costs for final good producers.

16If some engineers remain matched with suppliers for multiple periods, they could deliver capital goods
with one-period time to build. That would require us to specify how final good producers are allocated to
matched and unmatched engineers.
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4.3 Final good producers

The economy is populated by a unit mass of final good producers, indexed by j. Producers
are perfectly competitive and operate a decreasing-returns-to-scale technology that combines
labor and specific capital to produce a homogeneous final good

yjt = ztxjtk
α
jtℓ

ν
jt, 0 < α + ν < 1, (4.10)

where zt denotes aggregate productivity, and xjt idiosyncratic productivity. Both idiosyn-
cratic and aggregate productivity follow independent log AR(1) processes described by
parameters (ρx,σx) and (ρz,σz), cf. Section 3. Labor adjustment is frictionless and we
define the gross cash flow as

cfjt = max
ℓjt∈R+

{
ztxjtk

α
jtℓ

ν
jt − wtℓjt

}
. (4.11)

Firm-specific capital evolves over time according to kjt+1 = (1 − δ)kjt + ijt, where δ denotes
the depreciation rate and ijt is investment.

Firms face three types of capital adjustment frictions. (1) Orders for investment goods,
denoted iojt, are not delivered instantaneously. Instead, orders are delivered at the end of
the period with probability qt. (2) Capital adjustment is subject to fixed adjustment costs,
which are reflected in the capital good price, pE

t . This cost is random across firms reflecting
stochastic overhead costs ξ. Each period, final good producers without outstanding orders
take an iid draw of ξ from G, which determines the ξ-submarket on which they can hire
an engineering firm. They decide to hire an engineer after observing ξ. Once an engineer
is hired, ξ remains fixed until delivery. In addition, firms with an outstanding order incur
a fixed cost γ when adjusting the order size. (3) Capital is subject to resale losses. A
firm that sells part of its capital stock receives less than its purchase value. The resale loss
of divestment is captured by function ζ(io). If the investment order io is negative, then
ζ(io) = ζ̄io, with ζ̄ ∈ [0, 1], and else ζ(io) = io. The resale loss is thus a fraction (1 − ζ̄) of
the divestment. Total investment expenditures (or divestment earnings) are defined by

act(iojt, ξjt) = pE
t (ξjt) ζ(iojt). (4.12)

The presence of fixed capital adjustment costs and resale losses allow the model to match
salient features of the investment rate distribution, see, e.g., Cooper and Haltiwanger (2006).

To formally state the dynamic firm problem, we distinguish between final good producers
with and without outstanding orders. The idiosyncratic state of firms without an outstanding
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order is described by (kjt, xjt, ξjt). The associated cross-sectional probability distribution
is denoted µV and defined for SV = R+ × R+ × R+. Firms with an outstanding order
have idiosyncratic state (kjt, i

o
jt, xjt, ξjt) and the associated distribution, µW , is defined for

SW = R+ ×R×R+ ×R+. The joint cross-sectional distribution is µt = (µV
t , µ

W
t ) and defined

for S = SV × SW . The economy’s aggregate state is denoted by st = (µt, zt,mt, at). In the
following, we drop time and firm indices and use ′ notation to indicate subsequent periods.
The value of a firm without an outstanding order is

V (k, x, ξ, s) = max
{
V O(k, x, ξ, s), V NO(k, x, s)

}
, (4.13)

where V NO is the value of the firm without an outstanding order that makes no new order,
and V O is the value of the firm without an outstanding order that does make a new order,

V NO(k, x, s) = cf(k, x, s) + E
[
Q(s, s′)V ((1 − δ)k, x′, ξ′, s′)

]
,

V O(k, x, ξ, s) = max
io∈R

{
W (k, io, x, ξ, s)

}
.

New orders are made to maximize the value of the firm with an outstanding order,

W (k, io, x, ξ, s) = cf(k, x, s) + max
{
WA(k, x, ξ, s),WNA(k, io, x, ξ, s)

}
, (4.14)

WNA(k, io, x, ξ, s)

= q(s)
[

− ac(io, ξ, s) + E
[
Q(s, s′)V ((1 − δ)k + io, x′, ξ′, s′)

]]
+ (1 − q(s))E

[
Q(s, s′)W ((1 − δ)k, io, x′, ξ, s′)

]
,

WA(k, x, ξ, s) = −γw(s) + max
io′∈R

WNA(k, io′, x, ξ, s),

where WA is the value of the firm with an outstanding order that readjusts the order, and
WNA is the value of the firm with an outstanding order that does not readjust it. An
outstanding order io is delivered with probability q, and investment expenditures, ac, are
payed upon delivery.17 The extensive margin of the investment order decision is described
by a threshold function ξ̂(k, x, s) that satisfies

V O(k, x, ξ̂(k, x, s), s) = V NO(k, x, s). (4.15)

Adjustment is optimal whenever fixed adjustment costs ξ < ξ̂(k, x, s). Similarly, there exists

17This assumption is conservative. Under upfront payment, the cost of investment increases in time to
build because of discounting. This would amplify the effects of supply chain disruptions.
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a threshold γ̂(k, io, x, ξ, s) below which readjusting io is optimal. If q(s) = 1 ∀s, the firm
problem is the conventional problem with one period time to build, see, e.g., Khan and
Thomas (2008).

4.4 Recursive Competitive Equilibrium

A recursive competitive equilibrium is a list of value functions (V,W, V S, JS, V E, JE), policy
functions (C,L, ℓ, ξ̂, io, γ̂, io′), prices (w, pS, pE), market tightness (θ), and the cross-sectional
distribution (µ) that satisfy the following.

(i) Final good producers: V and W solve (4.13)–(4.14) and (ℓ, io, ξ̂, γ̂) are the associated
policy functions.

(ii) Engineers and suppliers: V S, JS, V E, JE satisfy (4.4)–(4.5) and θ, pS, pE are the
solutions to (4.6)–(4.7).

(iii) Households: C and L solve (4.1).

(iv) Labor market clearing:

L(s) = LY (s) + LO(s) + LA(s) (4.16)

LY (s) denotes labor demand by final good producers, LO(s) denotes overhead labor
demand by engineers and suppliers, and LA(s) denotes labor demand for post-order
adjustments. Formally,

LY (s) =
∫

S
ℓ(k, x, s)dµ, (4.17)

LO(s) =
∫

SV
1{ξ < ξ̂(k, x, s)}(1 + 1/θ(s))ξdµV +

∫
SW

(1 + 1/θ(s))ξdµW , (4.18)

LA(s) =
∫

SW
1{γ < γ̂(k, x, s)}γdµW , (4.19)

where 1{·} equals one if · is true and zero otherwise.18

(v) Final good market clearing:

C(s) =Y (s) − I(s) (4.20)

18Overhead labor demand depends on the mass of active engineers and suppliers. To compute the mass
of active engineers, we need to compute the mass of outstanding orders. This allows us to compute the mass
of active suppliers by multiplication with 1/θ.
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Y (s) denotes aggregate production of final good producers and I(s) aggregate invest-
ment. Formally,

Y (s) =
∫

S
zxkαℓ(k, x, s)νdµ, (4.21)

I(s) =
∫

SV
1{ξ < ξ̂(k, x, s)}q(s)ζ(io)dµV +

∫
SW

q(s)ζ(io)dµ̃W , (4.22)

where µ̃W corresponds to µW after adjusting an outstanding order as described by
(γ̂, io′).

(vi) Consistency: The evolution of µ is consistent with the policy functions.

The capital supply side of the model is analytically tractable. The two zero conditions
in (4.6) together with the solution to (4.7) jointly determine θt, pE

t and pS
t . In equilibrium,

the investment expenditure (or divestment earning) is pEζ(i) = ζ(i) + f(ξ), which consists
of a unit price component and a fixed cost component, with the latter given by f(ξ) = ξw

ϕq
.

The fixed cost component compensates engineers and suppliers for their overhead costs.
Note that f(ξ) increases in response to lower q because this raises the costs of capital good
production.

The equilibrium tightness is θt = ϕ
1−ϕ

at. Hence, the order filling probability qt unambigu-
ously falls in negative shocks to matching efficiency mt and in positive shocks to supplier
costs at. A decline in matching efficiency lowers the probability that an engineer matches
with an supplier to produce and fill its order. An increase in the supplier overhead cost
lowers the relative entry of suppliers, which makes it less likely for engineers to match with
suppliers. This lowers qt and time to build lengthens.

5 Calibration and quantitative results

We calibrate the model. Supply chain disruptions have sizable macroeconomic effects.

5.1 Calibration and solution

We set the length of a period to a quarter and calibrate β to match an annual risk-free rate
of 4%. The period utility function is additively separable, U(Ct, Lt) = logCt − ψLt. Linear
disutility in labor follows from indivisible labor, see Hansen (1985) and Rogerson (1988).
These preferences are common in the related literature, see, e.g., Khan and Thomas (2008)
and Bloom et al. (2018). We target a share of hours worked of 1/3 to calibrate ψ.
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Table 2: Calibrated parameters

Parameter Value Parameter Value

Discount factor β 0.99 Matching efficiency: mean µm 0.546
Leisure preference ψ 2.250 Matching efficiency: persistence ρm 0.970
Bargaining power ϕ 0.500 Matching efficiency: dispersion σm 0.144
Output elasticity of capital α 0.235 Firm productivity: persistence ρx 0.970
Output elasticity of labor ν 0.604 Firm productivity: dispersion σx 0.062
Depreciation rate δ 0.025 Aggr. productivity: persistence ρz 0.979
Upper bound of fixed cost ξ̄ 0.001 Aggr. productivity: dispersion σz 0.007
Capital resale loss (1 − ζ̄) ζ̄ 0.850

On the capital supply side of the model, we can generate the same movements in qt

through shocks to supplier costs at or shocks to matching efficiency mt. Without loss of
generality, we set at = 1 and focus on shocks to mt. We assume symmetric Nash bargaining
between engineers and suppliers, ϕ = 0.5. This renders the delivery probability independent
of the matching function elasticity η. We can leave η uncalibrated because it does not affect
prices, policies, or value functions. To calibrate the process of matching efficiency, described
by µm, ρm, and σm, we target the first and second moments of the backlog ratio series in
Figure 1(a). The average backlog ratio is 5.5 months. To filter out the slow-moving time
trend in the (quarterly) series, we use a low-frequency HP filter with λ = 100, 000. Deviations
from trend have a quarterly autocorrelation of 0.970 and a standard deviation of 0.144. In
the model, we recompute the backlog ratio. Aggregate sales is aggregate investment in (4.22)
and the aggregate order backlog in the model is

B(s) =
∫

SV
1{ξ < ξ̂(k, x, s)}ac(io(k, x, s), ξ, s)dµV +

∫
SW

ac(io, ξ, s)dµW . (5.1)

To calibrate the parameters of the final good production technology, notably α, ν, ρx,
σx, we use the estimates in Cooper and Haltiwanger (2006) based on the manufacturing
plant-level Longitudinal Research Database (LRD). The original estimates in Cooper and
Haltiwanger (2006) are at annual frequency and for a production function that can be thought
of as maximizing out labor. We provide the details of how we transform their estimates in
the notes of Table 4 in the Appendix. In general, the estimates in Cooper and Haltiwanger
(2006) are well within the range of estimates in the literature, surveyed in Table 4. We set
ρz = 0.979, σz = 0.007, and δ = 0.025 as in King and Rebelo (1999).

Finally, we calibrate the capital adjustment cost parameters. G, the distribution of fixed
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capital adjustment costs ξ, is assumed to be uniform with zero lower bound and upper
bound ξ̄. This conforms with Khan and Thomas (2008) and Bachmann and Bayer (2013).
To calibrate ξ̄ as well as the resale loss parameter ζ̄, we target the empirical share of spike
investment rates above 20% and below -20%. To be consistent with the calibration of α, ν,
ρx, σx, we target the corresponding moments documented in Cooper and Haltiwanger (2006).
They document an annual 19% share of plants with positive spikes and a 2% share of nega-
tive spikes. In the model, we aggregate the simulated quarterly data to annual frequency
when computing shares of investment spikes. The two adjustment cost parameters allow us
to match the shares of investment spikes. Intuitively, the fixed cost generates fat tails in
the investment rate distribution. The resale loss strengthens the asymmetry between posi-
tive and negative spikes, beyond the asymmetry generated by deprecation. Table 3 shows
that the calibrated model not only matches the two targeted moments of the investment
rate distribution, but also closely matches a number of non-targeted moments. These non-
targeted moments have been used in related work to target adjustment cost parameters,
e.g., skewness and kurtosis in Bachmann and Bayer (2013). Furthermore, the calibrated ζ̄

implies a 15% resale loss of capital, which is well within the range of estimates in Cooper and
Haltiwanger (2006) and Bloom (2009). We finally assume that re-adjusting an outstanding
order before delivery is prohibitively costly, i.e. γ > γ̂. This is motivated by the empirical
evidence in Section 2, which suggests large costs of modifying outstanding orders.

Table 3: Moments of the investment rate distribution

Model Data

Targeted moments
Positive spikes (LRD) 18.6% 19.1%
Negative spikes (LRD) 1.8% 1.8%

Non-targeted moments
Persistence of investment rate (LRD) 0.016 -0.007
Productivity–investment rate correlation (LRD) 0.14 0.22
Skewness of investment rate (Census) 5.1 4.9
Kurtosis of investment rate (Census) 48.3 43.4

Notes: All moments relate to annual investment rates computed as I/K.
LRD moments are from Cooper and Haltiwanger (2006) and Census
moments are from Kehrig and Vincent (2016).
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To solve the model, we first reduce the state space of the model and select approximation
techniques. Second, we apply the solution algorithm proposed in Campbell (1998) and Reiter
(2009). Conceptually, the idea is to combine global approximation methods with respect to
the individual states, but local approximation methods with respect to the aggregate states
of the model. The computational details are described in the Appendix.

5.2 Macroeconomic effects of supply chain disruptions

Model impulse response functions in GE. We use the calibrated model to study the
macroeconomic responses to a supply chain disruption that lengthens time to build from
5.5 months to 6.5 months on impact. The one-month increase corresponds to one standard
deviation of the time to build series. Figure 2 shows that the shock causes sizable responses
in output and investment. Investment – most directly affected by the disruption – falls by
8 percent on impact and remains 2 percent depressed two years later. Output falls by 1
percent on impact but converges back more slowly than investment. Measured aggregate
TFP declines more gradually and reaches its trough only 5 quarters after the shock.

Two channels account for the total effect of supply chain disruptions. First, the indirect
channel, which operates through capital misallocation. Second, the direct channel, which
captures that longer time to build delays the delivery of outstanding orders and thereby
reduces aggregate investment and output. In a model without firm heterogeneity, the direct
effect remains operative, whereas the indirect effect disappears. We next disentangle these
direct and indirect effects of supply chain disruptions. Since aggregate TFP only responds
through the indirect channel, we isolate the direct channel by offsetting the endogenous TFP
decline through a series of exogenous technology shocks such that TFP remains at its steady
state level. These direct effect responses are shown as dotted lines in Figure 2. To understand
the immediate responses of output and investment, the direct channel is central. The reason
is that, on impact, the allocation of capital across producers cannot respond much: capital
is predetermined and differences in idiosyncratic productivity are highly persistent. Few
quarters after the disruption, capital misallocation becomes more important. About half of
the output response is then due to the indirect effect.

The indirect effect in turn consists of two components. First, longer time to build worsens
capital misallocation because firms invest less frequently. They do so because firms effectively
face more uncertainty when making investment decisions. Figure 8 in the Appendix shows
that the share of firms that do not sign a new order contract for capital goods goes up
from 85.5% to 87%. Second, even if firms order and invest, the longer time delay between
order and delivery implies that ex-post the investment is less well aligned with firm-level
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Figure 2: Responses to a supply chain disruption
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Notes: The figures show the general equilibrium impulse responses to a supply chain disruption
that lengthens time to build by one month. ‘Direct channel’ denotes the impulse responses when
aggregate TFP changes are eliminated through an offsetting series of aggregate technology (z)
shocks. Aggregate TFP is computed as TFP = log(Yt) − α log(Kt) − ν log(Lt).

productivity. Figure 8 further shows that the order backlog increases after supply chain
disruptions. Hence, the inflows to the backlog, new orders, fall more strongly than the
outflows from the backlog, investment.

Partial equilibrium responses. We have so far studied the general equilibrium (GE)
responses to supply chain disruptions. It is important to account for GE effects, because
household consumption smoothing motives can substantially dampen the investment and
output responses, see Khan and Thomas (2008). However, model misspecification may bias
the GE effects. For example, our baseline model may be misspecified regarding preferences,
expectation formation (e.g., learning about aggregate shocks), or the aggregate resource
constraint (e.g., the model abstracts from international trade).

To shed light on the role of GE effects in the model, Figure 3 shows the responses of
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GDP and aggregate TFP in partial equilibrium (PE). Different from the GE responses, wage
and stochastic discount factor do not respond to the shock but remain at their steady state
levels. While the baseline model is a closed-economy model, this setup may be justified as
small open economy. For the US economy, truth is somewhere in between. In PE, the output
response to supply chain disruptions is 50% larger compared to GE. In addition, the GDP
response is now hump-shaped. The peak decline is attained only 9 quarters after the shock.
The reason is that capital misallocation builds up gradually. Conversely, the sharp initial
drop of GDP in the baseline model is due to price responses.

Figure 3: Partial equilibrium responses to a supply chain disruption
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Notes: The figures show the partial equilibrium impulse responses to a supply chain disruption
that lengthens time to build by one month.

The aggregate TFP response is similar in shape and only mildly amplified compared to
the GE response. The time to build response is the same in GE and PE and that generates
capital misallocation following the logic of the analytical framework in Section 3. Different
from the analytical framework, in the full model the extensive margin of capital adjustment
also responds to longer time to build. As longer time to build makes an investment project
effectively more uncertain, some firms postpone orders for capital goods. This wait-and-
see policy further contributes to capital misallocation and the aggregate TFP response. It
is the extensive margin response, in which GE differs from PE. In GE, the consumption
smoothing motive of households implies that there is less wait-and-see and relatively more
extensive-margin capital adjustment.

Comparison with technology shocks. In Figure 4, we compare our baseline responses
in Figure 2 with the responses to an exogenous aggregate technology shocks. The technology
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shock is scaled to attain a peak aggregate TFP response of 0.22% comparable to the supply
chain disruption. The model propagates the technology shock through multi-period time to
build. In the model with one-period time to build, GDP peaks when the shock hits and
revert back to steady state afterwards. With multi-period time to build, the peak response
is one quarter after the shock hits and the response is more persistent. It is almost by
construction, that the GDP response to technology shocks is similar to the GDP response
to a supply chain disruption purely from the indirect effect, i.e., the difference between total
and direct effect in Figure 2.

Figure 4: Responses to a technology shock
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Notes: The figures show the general equilibrium impulse responses to an aggregate technology
shock and to a supply chain disruption that lengthens time to build by one month.

Supply chain disruptions and post-war business cycles We next ask to what extent
capital supply chain disruptions can help us understand post-war business cycles. We find
that disruptions can explain up to half of the contraction in GDP during past recessions
in the US. In particular, we consider the following exercise. We assume that movements
in the empirical time to build series (observed from 1968 through 2015) are solely due to
supply chain disruptions. This assumption likely give us an upper bound on the importance
of supply chain disruptions. Through the lense of the model, we can back out the required
series of disruption shocks and compute the implied series of GDP and investment. To be
clear, we compute fluctuations in these series that are only driven by disruptions. To make
the quarterly series comparable to the data, we HP filter both the simulated series and their
empirical counterparts using the low-frequency filter employed in the calibration.

Panel (a) in Figure 5 plots the detrended empirical series of GDP and investment
against their model counterparts. Three observations stand out. First, NBER recession
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periods (grey-shaded areas) correspond to periods in which supply chain disruptions cause
below-trend output growth. Second, disruptions explain an important share of the observed
business cycle variations. These shocks alone explains a drop in investments of 9-12% during
the Great Recession and the early 1990s recession, compared to a drop of 15-16% in the data.
For GDP, the model explains about half of the empirically observed drop during these two
recessions. Third, the model suggests that disruptions alone tend to push the US economy
into recession up to one year ahead of NBER recession periods.

Figure 5: Role of supply chain disruptions in understanding past business cycles
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Notes: The above time series are computed matching the empirically observed (filtered) move-
ments in time to build through supply chain disruptions and otherwise using the baseline model
calibration. Grey-shaded areas indicate NBER recession dates.

6 VAR evidence

To gauge the macroeconomic effects of capital supply chain disruptions, we use a structural
VAR model. Increases in time to build foreshadow large macroeconomic contractions.

The baseline VAR model specification includes eight time series: time to build, real GDP,
real consumption, real investment, consumer price, real wage, federal funds rate, and total
factor productivity. All variables but the federal funds rate enter the VAR model in logs.
We use data at quarterly frequency and cover 1968Q1 through 2014Q4. Time to build is
the M3 backlog ratio, total factor productivity is from Fernald (2014), and the remaining
macroeconomic series are sourced from FRED.19 The baseline model specification is in levels

19The names of the FRED series we use are GDPC96 (Real GDP), DNDGRA3Q086SBEA (Real
Personal Consumption Expenditures: Nondurable goods), B008RA3Q086SBEA (Real Private Fixed Invest-
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with four lags and a linear time trend. To identify capital supply disruptions, we impose
restrictions consistent with the business cycle model in Section 4: The only shock that affects
time to build contemporaneously is a capital supply chain disruption. All other structural
shocks may affect time to build through a one-period lag.

Figure 6 shows the impulse responses to a one standard deviation supply chain disruption.
Time to build increases, while GDP and investment significantly fall. These responses are
economically important: GDP falls by up to 0.4%, investment by up to 1.8%, and aggregate
TFP by up to 1% within the first three years. The empirical results are robust in various
dimensions. They are robust to a model in first-differences and without time trend, see
Figure 10 in the Appendix. They are robust to the alternative identifying restriction that
disruptions have a contemporaneous effect only on time to build, see Figure 11. Finally,

Figure 6: VAR impulse responses to a supply chain disruption
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Notes: Solid, blue lines are the IRFs to a one standard deviation supply chain disruption. Shaded,
gray areas show the associated 90% confidence intervals. The figures are based on the base-
line eight-variate quarterly VAR model. The remaining four IRFs are shown in Figure 9 of the
Appendix.

ment: Nonresidential), CPI, AHETPI/CPI (Average Hourly Earnings of Production and Nonsupervisory
Employees: Total Private; deflated by CPI ), FEDFUNDS (Effective Federal Funds Rate). The results are
robust against using total consumption and total investment.
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they are robust to a monthly VAR model, see Figure 13. The monthly model includes time
to build, industrial production, consumption, CPI, real wages, FFR, average hours worked,
and employment.

Moreover, we explore variations of the baseline model, in which we respectively add
or replace variables that are potentially important. The variables added are Jurado et al.
(2015)’s macro uncertainty, the relative price of investment goods, Gilchrist and Zakrajšek
(2012)’s credit spread, Fernald (2014)’s factor utilization, total inventories from the M3
survey, and the S&P500 index. In addition, we replace TFP by utilization-adjusted TFP
from Fernald (2014). Figure 11 shows that the responses of time to build, TFP, investment,
and GDP are robust across model variations. Figure 12 shows the IRFs of the added vari-
ables. Uncertainty rises after a capital supply disruption, which may reflect the increased
uncertainty in the firm’s investment planning problem under longer time to build. Both the
relative investment price and credit spreads do not respond significantly. This suggests that
disruptions do not pick up investment-specific technology shocks or financial shocks.

7 Conclusion

This paper makes an original contribution to the business cycle literature by studying the role
of fluctuations in time to build. We establish that time to build is countercyclical and provide
micro evidence that time to build lengthens in response to capital supply chain disruptions.
Motivated by this evidence, we develop a dynamic stochastic general equilibrium model. In
the model, fluctuations in time to build are driven by supply chain disruptions. Calibrated to
US data, we find that such disruptions to capital supply have sizable macroeconomic effects.
A shock that lengthens time to build by one month depresses GDP by up to one percent.
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A Order backlog, shipment, and new orders

Figure 7: Aggregate order backlog, shipments, and new orders
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Notes: All series refer to the non-defense equipment goods sector from M3 data and are expressed in nominal
values. Shaded, gray areas indicate NBER recession dates.
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B Production technology and the aggregate TFP of
time to build

The literature knows a wide range of estimates for α, ν, ρx, and σx in Sections 3 and 4.
The following will provide a short survey of estimates in the literature. Estimates differ in
the underlying micro data, which implies differences in time period, frequency (quarterly or
annual), unit of observation (plants or firms), and scope (public or private firms, manufac-
turing or all sectors). Further differences lie in the calibration or estimation strategy. One
approach is to estimate all parameters directly from the micro data, another approach is
indirect by targeting moments of the investment rate distribution. The first five columns of
Table 4 summarize prominent estimates in the literature with additional details provided in
the table notes.

A pervasive result across estimates is (i) the high persistence of firm/plant-level prof-
itability shocks, and (ii) the large variance of these shocks. In comparison, typical estimates
of aggregate productivity shocks are at least an order of magnitude smaller. Both (i) and (ii)
are important for the misallocation mechanism. If firm-level profitability shocks are volatile
but transitory, changes in time to build will not induce any factor misallocation. Conversely,
if firm-level shocks are persistent but little volatile, being able to respond to them a month
sooner or later will have a little impact at the aggregate level.
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Table 4: Aggregate TFP loss when time to build lengthens from 5 to 6 months

Calibration α ν ρx σx TFP loss

data source: annual manufacturing plant-level LRD data, 1972-1998
Cooper and Haltiwanger (2006) 0.235 0.604 0.970 0.062 0.21%
Khan and Thomas (2013) 0.270 0.600 0.901 0.068 0.30%

data source: annual manufacturing plant-level ASM/CMF data, 1972-2009
Kehrig (2015) 0.290 0.650 0.622 0.138 1.14%

data source: quarterly firm-level Compustat data, 1973-2012
Gilchrist et al. (2014) 0.255 0.595 0.900 0.150 0.23%

data source: quarterly firm-level IRS data, 1997-2010
Winberry (2016) 0.210 0.640 0.940 0.026 0.04%

Notes: A period is a quarter and we increase τ from 5/3 to 6/3 quarters. The TFP loss is formally defined
as TFP5/3 − TFP6/3. Whenever the original calibration is at annual frequency, I impute quarterly persis-
tence ρx using ρ

1/4
x,annual, and quarterly dispersion σx accordingly. Cooper and Haltiwanger (2006) estimate

the revenue production function yjt = x̃jtk
θ
jt. The estimated θ = α/(1 − ν) = 0.592 together with the esti-

mated labor cost share aL = ν/(α + ν) = 0.72 pins down α and ν. Considering the production function as
maximizing out labor, then xjt = x̃1−ν

jt , which allows me to impute σx. Khan and Thomas (2013) assume
ν = 0.60 following Cooley and Prescott (1995), and calibrate α = 0.256 to match an aggregate capital-to-
output ratio of 2.3. They calibrate ρx and σx by targeting the share of LRD plants with spike investments,
investment inaction, and investment dispersion. Kehrig (2015) estimate all parameters from the data while
including six-digit industry fixed effects. Gilchrist et al. (2014) assume a 30% capital cost share and esti-
mate the remaining parameters from the data. Winberry (2016) assumes ν = 0.64, α+ ν = 0.85, and targets
moments of the investment rate distribution to calibrate ρx and σx.
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C Solution algorithm

The recursive competitive equilibrium is not computable, because the solution depends on
the infinite-dimensional distribution µ and its law of motion. Instead, we approximate the
equilibrium by adopting the algorithm proposed in Campbell (1998) and Reiter (2009). The
general idea is to use global approximation methods with respect to the individual states,
but local approximation methods with respect to the aggregate states. We solve the steady
state of the model using projection methods and perturb the model locally around the
steady state to solve for the model dynamics in response to aggregate shocks. Compared to
the Krusell-Smith algorithm, see Krusell et al. (1998), the perturbation approach does not
require simulating the model dynamics in order to update the parameters of the forecasting
rules. Further it can handle a large number of aggregate shocks.

In this section, we first show how to simplify the equilibrium conditions. Second, we
explain in detail how to apply the Campbell-Reiter algorithm to our model.

C.1 Simplified final good firm problem

To solve the model in a computationally efficient way, we rewrite the problem of the final
good firm. To save on notation, we first drop the aggregate state s and instead index
functions that depend on the aggregate state by time t subscripts. Second, we transform the
firm problem. Instead of io, the investment order, we let firms choose ko, the new capital
stock upon delivery. Computationally, this transformation has the advantage that we can
use the same grid for ko as for k, and this grid is naturally tighter than the one for io. To
leave the firm problem unchanged, ko needs to evolve over time to guarantee the implicitly
defined investment order io remains unchanged. Using the identity, io = ko + (1 − δ)k, the
evolution of ko over time (conditional on no delivery) is given by

ko′ = ko − δ(1 − δ)k.

Third, we simplify the investment expenditure function. In terms of ko, we have

act(k, ko, ξ) = ζ(ko − (1 − δ)k) + ft(ξ).

All adjustment costs including the latter term, which captures fixed adjustment costs, is
paid upon delivery. All that matters for the firm, however, is the expected present value of
this fixed cost, which we denote by fact ξ. Note that fact can be solved recursively using

fact = qt
wt

ϕqt

+ (1 − qt)EtQt,t+1fact+1,
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where Et denotes the expectation with respect to aggregate state st+1 conditional on st.
Fourth, we redefine the firm value functions such that the expectation with respect to
idiosyncratic productivity is not computed within the maximization problem. This raises
computational efficiency and tends to smooth the value functions. More precisely, we define

Ṽt(k, x, ξ) = Ex′Eξ′Vt(k, x′, ξ′), W̃t(k, ko, x, ξ) = Ex′Wt(k, ko, x′, ξ),

where Ex (Eξ) denotes the expectation with respect to x′ (ξ′) conditional on x (ξ). Finally,
we simplify the firm problem in equations (4.13)–(4.14),

Ṽt(k, x) = Ex′Eξ′ max
{
V O

t (k, x′) − factξ
′, V NO

t (k, x′)
}
,

V NO
t (k, x) = cft(k, x) + EtQt,t+1

[
Ṽt+1((1 − δ)k, x)

]
,

V O
t (k, x) = max

ko∈R+

{
Wt(k, ko, x)

}
,

Wt(k, ko, x) = cft(k, x)

+ qt

[
− ζ(ko − (1 − δ)k) + Et

[
Qt,t+1Ṽt+1 (ko, x)

]]
+ (1 − qt)Et

[
Qt,t+1W̃t+1 ((1 − δ)k, ko − δ(1 − δ)k, x)

]]
,

W̃t(k, ko, x) = Ex′Wt(k, ko, x′).

This allows us to compute the extensive margin adjustment policy in closed form,

ξ̂t(k, x) = Ṽ O
t (k, x) − Ṽ NO

t (k, x)
fact

.

In line with above reformulation of the firm problem, we redefine µV
t as the cross-sectional

distribution of firms without outstanding orders over idiosyncratic states (k, x) and µW
t as

the distribution of firms with outstanding orders over (k, ko, x). It holds that µt = (µV
t , µ

W
t ).

C.2 Approximations

We approximate the AR(1) process of idiosyncratic productivity using Tauchen’s algorithm.
We denote the discrete grid points of x by x1, ..., xnx consisting of nx grid points and the
transition probability from state xj to state xj′ one period later by πx(xj′ |xj). Next, we
approximate the firm value function in arguments k and ko using the collocation method. Φ
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denotes basis functions in matrix representation and c denotes vectors of coefficients

Ṽt(k, x) ≃ΦV (k, x)cV
t ,

W̃t(k, ko, x) ≃ΦW (k, ko, x)cW
t .

The approximations are exact at the nk collocation nodes k1, ..., knk
and ko

1, ..., k
o
nk

. We
choose the same collocation nodes for k and ko. We use cubic B-splines to approximate the
firm value functions. This does not only have the advantage of being computationally fast,
but also conditional on the coefficients we know the Jacobian in closed form. In particular,
we can write down the optimality condition for intensive margin capital adjustment (ko

t ) as

qtζ(ko
t − (1 − δ)k) =qtEtQt,t+1ΦV

k (ko
t , x)cV

t+1 + (1 − qt)EtQt,t+1ΦW
ko ((1 − δ)k, ko

t , x)cW
t+1,

where ΦV
k = (∂ΦV )/(∂k) and ΦW

ko = (∂ΦW )/(∂ko). To render the infinite-dimensional distri-
bution µt tractable, we approximate it with a discrete histogram. That is, µt measures the
share of firms for each discrete combination of capital stock ki1 , outstanding order ko

i2 (both
correspond to the collocation nodes), and productivity xj.

C.3 Labor demand

Note that labor demand depends on labor used in production and overhead labor used by
engineers and suppliers. Labor used in production is

LY
t =

∑
i1,i2,j

µt(ki1 , ki2 , xj)(ν/wt)1/(1−ν)(ztxj)1/(1−ν)k
α/(1−ν)
i1 .

Computing the overhead labor demand is difficult because it depends on the distribution
of engineers over submarkets ξ, which in turn depends on past decisions of final good firms
to make an order in submarket ξ, formally ξ̂t−j(k, x) ∀j ≥ 1. In the original setup of
the final good firm this information was contained in distribution µW

t , but, after the above
simplifications, µW does not contain ξ anymore. We propose a simple remedy to this problem.
Denote by ξav

t the average ξ across all outstanding orders (including new and old orders).
Then, labor demand of engineers is simply

LO,E
t =

(∫
dµW

t +
∫
1{ξ < ξ̂t}dG(ξ)dµV

t

)
ξav

t .

Since delivery is state-independent, next period’s ξav
t+1 only depends on ξ̂t+1 and today’s ξav

t .
It does, however, not depend on the distribution of engineers over the (k, ko, x) space or the
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duration of search. Formally, we have

ξav
t+1 =

(1 − qt)
∫
ξav

t dµ
W
t +

∫
ξ1{ξ < ξ̂t+1}dG(ξ)dµV

t+1

(1 − qt)
∫
dµW

t +
∫
1{ξ < ξ̂t+1}dG(ξ)dµV

t+1

=
(1 − qt)

∑
i1,i2,j µ

W
t (ki1 , ki2 , xj)ξav

t +∑
i,j µ

V
t (ki, xj) ξ̄

2

(
ξ̂t(ki,xj)

ξ̄

)2

(1 − qt)
∑

i1,i2,j µ
W
t (ki1 , ki2 , xj) +∑

i,j µ
V
t (ki, xj)

(
ξ̂t(ki,xj)

ξ̄

) ,

and in steady state

ξ̄av =

∑
i,j

µV (ki, xj)
ξ̄

2

 ξ̂(ki, xj)
ξ̄

2
 /

∑
i,j

µV (ki, xj)

 ξ̂(ki, xj)
ξ̄

 .
In equilibrium, the overhead labor demand of suppliers is simply a factor 1/θ of the engineers’
overhead labor demand. Thus, total overhead labor demand is given by

LO
t = LO,E

t (1 + 1/θ).

C.4 Campbell-Reiter algorithm

Using the preceding approximation and simplification steps, the model equilibrium is described
by the following non-linear equations:

ΦV (k, x)cV
t = Ex′Eξ′ max

{
V O

t (k, x′) − factξ
′, V NO

t (k, x′)
}

(C.1)

V NO
t (k, x) = cft(k, x) + EtQt,t+1ΦV ((1 − δ)k, x)cV

t+1

V O
t (k, x) = Wt(k, ko

t , x)

Wt(k, ko, x) = cft(k, x)

+ qt

[
ζ(ko − (1 − δ)k) + EtQt,t+1ΦV (ko, x)cV

t+1

]
+ (1 − qt)

[
EtQt,t+1ΦW ((1 − δ)k, ko − δ(1 − δ)k, x)cW

t+1

]
ΦW (k, ko, x)cW

t = Ex′Wt(k, ko, x′) (C.2)

fact = wt

ϕ
+ (1 − qt)EtQt,t+1fact+1 (C.3)

ξ̂t(k, x) = (V O
t (k, x) − V NO

t (k, x))/fact

cft(k, x) = (1 − ν) (ν/wt)ν/(1−ν) (ztx)1/(1−ν)kα/(1−ν)

qt = mt(ϕ/(1 − ϕ))η−1
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qtζ(ko
t − (1 − δ)k) = qtEtQt,t+1ΦV

k (ko
t , x)cV

t+1 + (1 − qt)EtQt,t+1ΦW
ko ((1 − δ)kt, k

o
t , x)cW

t+1

(C.4)

µV
t+1(ki′ , xj′) =

∑
i,j

πx(xj′|xj)µV
t (ki, xj)[ωV,V,O

t (i, i′, j) + ωV,V,NO
t (i, i′, j)] (C.5)

+
∑

i1,i2,j

πx(xj′|xj)qtµ
W
t (ki1 , k

o
i2 , xj)ωW,V

t (i1, i2, i′, j)

µW
t+1(ki′

1
, ki′

2
, xj′) =

∑
i,j

πx(xj′ |xj)µV
t (ki, xj)ωV,W

t (i, i′1, i′2, j) (C.6)

+
∑

i1,i2,j

πx(xj′|xj)µW
t (ki1 , ki2 , xj)ωW,W

t (i1, i2, i′1, i′2, j)

Yt =
∑

i1,i2,j

µt(ki1 , ki2 , xj) (ν/wt)ν/(1−ν) (ztxj)1/(1−ν)k
α/(1−ν)
i1

It =
∑
i,j

µV
t (ki, xj)G(ξ̂t(ki, xj))qtζ(ko

t − (1 − δ)ki)

+
∑

i1,i2,j

µW
t (ki1 , k

o
i2 , xj)qtζ(ko

i2 − (1 − δ)ki1)

Ct = Yt − It

Lt =
∑

i1,i2,j

µt(ki1 , ki2 , xj)(ν/wt)1/(1−ν)(ztxj)1/(1−ν)k
α/(1−ν)
i1

+

 ∑
i1,i2,j

µt(ki1 , ki2 , xj) +
∑
i,j

µV
t (ki, xj)

ξ̂t(ki, xj)
ξ̄

 ξav
t (1 + 1/θ)

ξav
t+1 =

(1 − qt)
∑

i1,i2,j µt(ki1 , ki2 , xj)ξav
t +∑

i,j µ
V
t (ki, xj) ξ̄

2

(
ξ̂t(ki,xj)

ξ̄

)2

(1 − qt)
∑

i1,i2,j µt(ki1 , ki2 , xj) +∑
i,j µ

V
t (ki, xj)

(
ξ̂t(ki,xj)

ξ̄

) (C.7)

wt = UL(Ct, Lt)/UC(Ct, Lt) (C.8)

Qt,t+1 = βUC(Ct+1, Lt+1)/UC(Ct, Lt) (C.9)

log(mt+1) = (1 − ρm) log(µm) + ρm log(mt) (C.10)

log(zt+1) = ρz log(zt) (C.11)

With the following auxiliary equations for the law of motion of the distribution:

ωV,V,O
t (i, i′, j) =


G(ξ̂t(ki, xj))qt

ki′ −ko
t (ki,xj)

ki′ −ki′−1
if ko

t (ki, xj) ∈ [ki′−1, ki′ ]

G(ξ̂t(ki, xj))qt
ko

t (ki,xj)−ki′
ki′+1−ki′

if ko
t (ki, xj) ∈ [ki′ , ki′+1]

0 else
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ωV,V,NO
t (i, i′, j) =


[1 −G(ξ̂t(ki, xj))]ki′ −(1−δ)ki

ki′ −ki′−1
if (1 − δ)ki ∈ [ki′−1, ki′ ]

[1 −G(ξ̂t(ki, xj))] (1−δ)ki−ki′
ki′+1−ki′

if (1 − δ)ki ∈ [ki′ , ki′+1]

0 else

ωV,W
t (i, i′1, i′2, j) =



G(ξ̂t(ki, xj))(1 − qt)
ki′

1
−(1−δ)ki

ki′
1

−ki′
1−1

ki′
2

−ko
t (ki,xj)

ki′
2

−ki′
2−1

if ko
t (ki, xj) ∈ [ki′

2−1, ki′
2
] and (1 − δ)ki ∈ [ki′−1, ki′ ]

G(ξ̂t(ki, xj))(1 − qt)
(1−δ)ki−ki′

1
ki′

1+1−ki′
1

ki′
2

−ko
t (ki,xj)

ki′
2

−ki′
2−1

if ko
t (ki, xj) ∈ [ki′

2−1, ki′
2
] and (1 − δ)ki ∈ [ki′ , ki′+1]

G(ξ̂t(ki, xj))(1 − qt)
ki′

1
−(1−δ)ki

ki′
1

−ki′
1−1

ko
t (ki,xj)−ki′

2
ki′

2+1−ki′
2

if ko
t (ki, xj) ∈ [ki′

2
, ki′

2+1] and (1 − δ)ki ∈ [ki′−1, ki′ ]

G(ξ̂t(ki, xj))(1 − qt)
(1−δ)ki−ki′

1
ki′

1+1−ki′
1

ko
t (ki,xj)−ki′

2
ki′

2+1−ki′
2

if ko
t (ki, xj) ∈ [ki′

2
, ki′

2+1] and (1 − δ)ki ∈ [ki′ , ki′+1]

0 else

ωW,V
t (i1, i2, i′, j) =


qt

ki′ −ki2
ki′ −ki′−1

if ki2 ∈ [ki′−1, ki′ ]

qt
ki2 −ki′

ki′+1−ki′
if ki2 ∈ [ki′ , ki′+1]

0 else

ωW,W
t (i1, i2, i′1, i′2, j) =



(1 − qt)
ki′

1
−(1−δ)ki1

ki′ −ki′
1−1

if (1 − δ)ki1 ∈ [ki′
1−1, ki′

1
] and i′2 = i2

(1 − qt)
(1−δ)ki1 −ki′

1
ki′

1+1−ki′
1

if (1 − δ)ki1 ∈ [ki′
1
, ki′

1+1] and i′2 = i2

0 else

Given nk collocation nodes and nx discrete grid points of x, the labeled equations (C.1)–
(C.11) are nf ≡ 2n2

knx + 3nknx + 6 in number. We consider the labeled equations as main
equations in defining the model equilibrium. All other unlabeled equations are auxiliary
equations. We organize the nf labeled equations in

Et[f(xt,xt+1,yt,yt+1)] = 0, (C.12)

where ϵt = (ϵm
t , ϵ

z
t ) ∈ R2 denotes the vector of aggregate shocks. xt denotes predetermined
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state variables and yt denotes non-predetermined state variables (control variables)

xt = [µt; log(ξav
t ); log(mt); log(zt)] ∈ Rnx , nx ≡ n2

knx + nknx + 3 (C.13)

yt = [cV
t ; cW

t ; log(ko
t ); log(Qt,t+1); log(fact); log(wt)] ∈ Rny , ny ≡ n2

knx + 2nknx + 3.
(C.14)

In the general case, the model solution is given by

yt = g(xt, ζ), (C.15)

xt+1 = h(xt, ζ) + ζσ̃ϵt+1, (C.16)

where ζ is the perturbation parameter and g : Rnx × R+ → Rny and f : Rnx × R+ → Rnx .
The exogenous shocks are collected in ϵt+1 ∈ Rnϵ , and σ̃ ∈ Rnx×nϵ attributes shocks to the
according equations and scales them (by σm, σz). To solve the two policy functions, we
use a first-order approximation. We follow the perturbation algorithm in Schmitt-Grohe
and Uribe (2004). This requires us to compute the Jacobians of function f (locally) around
steady state. The (non-stochastic) steady state is defined as f(x̄, x̄, ȳ, ȳ) = 0. Thus, we first
solve the steady state and then use finite-differences to compute the Jacobian matrices of f
with respect to its four arguments. The algorithm in Schmitt-Grohe and Uribe (2004) also
allows us to check for existence and uniqueness of a model solution.

The costliest part in the computation relates to the 2n2
knx equations associated with µW

and cW . In principle, we could reduce the number of equations by computing the policy
function ko

t from other control variables, without including it as a control variable. However,
solving the model involves root-finding in every perturbation, which is (a) computationally
expensive, and (b) potentially unstable.
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D Further model results

Figure 8: Further GE responses to a supply chain disruption
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Notes: The figures show the general equilibrium impulse responses to a supply chain disruption that lengthens
time to build by one month.

44



E SVAR robustness and additional results

Figure 9: Baseline VAR model: remaining IRFs to a capital supply disruption
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Notes: Solid, blue lines show (selected) IRFs to a one-standard deviation capital supply disruption shock.
Shaded, gray areas show the associated 90% confidence intervals. The figures are based on the baseline
eight-variate quarterly VAR model. The other four IRFs are shown in Figure 6.
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Figure 10: First-differenced VAR model: IRFs to a capital supply disruption
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Notes: Solid, blue lines show (selected) cumulative IRFs to a one-standard deviation capital supply disruption
shock. Shaded, gray areas show the associated 90% confidence intervals. The figures are computed from an
eight-variate quarterly VAR model in first differences (without a time trend).
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Figure 11: Variations of baseline VAR model: IRFs to a capital supply disruption
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Notes: Solid, blue lines show (selected) IRFs to a one-standard deviation capital supply disruption shock,
and shaded, gray areas show the associated 90% confidence intervals, under the baseline model. The figure
includes further impulse responses under variations of the structural VAR model. ‘Last’ identifies capital
supply disruptions by ordering time to build last; ‘Unc’ adds Jurado et al. (2015)’s macro uncertainty; ‘Rel’
adds the relative price of investment goods; ‘CS’ adds Gilchrist and Zakrajšek (2012)’s credit spread; ‘UA’
replaces TFP by Fernald (2014)’s utilization-adjusted TFP; ‘UT’ adds Fernald (2014)’s factor utilization;
‘TI’ adds total inventories from the M3 survey; ‘SP’ adds the S&P500 index.
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Figure 12: Additional IRFs to a capital supply disruption
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Notes: Solid, blue lines show (selected) IRFs to a one-standard deviation capital supply disruption shock.
Shaded, gray areas show the associated 90% confidence intervals. The IRFs are based on variations of the
baseline VAR model, which add one variable, respectively. The single exception is utilization-adjusted TFP
from Fernald (2014), which replaces TFP in the baseline model. The variables added are Jurado et al.
(2015)’s macro uncertainty, the relative price of investment goods, Gilchrist and Zakrajšek (2012)’s credit
spread, Fernald (2014)’s factor utilization, total inventories from the M3 survey, and the S&P500 index.
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Figure 13: Monthly VAR model: IRFs to a capital supply disruption

0 12 24 36 48 60 72
-0.6

-0.4

-0.2

0

0.2

0 12 24 36 48 60 72
-0.6

-0.4

-0.2

0

0.2

(a) Variables in levels
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(b) Variables in first differences

Notes: Solid, blue lines show (selected) IRFs to a one-standard deviation capital supply disruption shock.
Shaded, gray areas show the associated 90% confidence intervals. The IRFs in panel (a) are based on an
eight-variate monthly VAR model with 12 lags and linear time trend. The variables included are time to
build, industrial production, consumption, CPI, real wages, FFR, average hours worked, and employment
(all in logs except FFR). Panel (b) shows cumulative IRFs based on the same eight-variate monthly VAR
model with 12 lags but estimated in first differences (without time trend).
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