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Abstract

Conventional strategies to identify monetary policy shocks rest on the implicit
assumption that systematic monetary policy is constant over time. We formally show
that these strategies do not isolate monetary policy shocks in an environment with
time-varying systematic monetary policy. Instead, they are contaminated by system-
atic monetary policy and macroeconomic variables, leading to contamination bias in
estimated impulse responses. Empirically, we show that Romer and Romer (2004)
monetary policy shocks are indeed predictable by fluctuations in systematic monetary
policy. Instead, we propose a new monetary policy shock that is orthogonal to system-
atic monetary policy. Our shock suggests U.S. monetary policy has shorter lags and
stronger effects on inflation and output.
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1 Introduction

Empirical monetary policy shock series form the backbone of a large literature in monetary
economics. The estimated responses to these shocks are used to assess the effectiveness of
monetary policy, construct policy counterfactuals, study the optimality of monetary policy,
estimate structural macroeconomic equations, or estimate DSGE models.1 These applica-
tions require empirical monetary policy shocks that are well identified, meaning they capture
exogenous changes in a policy instrument orthogonal to other macroeconomic shocks.
The central point of this paper is that fluctuations in systematic monetary policy pose a
challenge to conventional strategies to identify monetary policy shocks. The fundamental
problem of conventional identification strategies is the implicit assumption that system-
atic monetary policy is constant across time. Under the assumption, any time-variation
in systematic monetary policy will be contained in the empirical monetary policy shock,
consistent with common views about these shocks (see quote below).2

We do not have many good economic theories for what a structural monetary policy shock
should be. Other than “random coin flipping,” the most frequently discussed source of
monetary policy shocks is shifts in central bank preferences, caused by changing weights
on inflation vs unemployment in the loss function or by a change in the political power of
individuals on the FOMC. Ramey (2016, Handbook of Macroeconomics, Vol. 2A, p.89)

This paper makes a theoretical and empirical contribution to the identification of monetary
policy shocks. Our theoretical contribution is to formally show that conventional empirical
identification strategies do not isolate monetary policy shocks in an environment with time-
varying systematic monetary policy. Instead, they are contaminated by systematic monetary
policy and other macroeconomic shocks, leading to contamination bias in estimated impulse
response functions. The empirical contribution is threefold. First, we show that monetary
policy shocks as estimated in the seminal Romer and Romer (2004) are predictable by a
time-varying measure of systematic monetary policy. Second, we propose a new monetary
policy shock series that is orthogonal to measured fluctuations in systematic monetary policy.
Third, we find that inflation and output respond more quickly and strongly relative to the
Romer and Romer (2004) shock.

1See, e.g., Romer and Romer (1989); Bernanke and Blinder (1992); Bernanke, Gertler, and Watson
(1997); Christiano, Eichenbaum, and Evans (1999); Romer and Romer (2004); Christiano, Eichenbaum, and
Evans (2005); Gertler and Karadi (2015); Barnichon and Mesters (2020, 2023); McKay and Wolf (2023).

2Similarly, in the first Handbook of Macroeconomics, Christiano et al. (1999, p.71-72) argue that an
empirical monetary policy shock [..] reflects exogenous shocks to the preferences of the monetary authority,
perhaps due to stochastic shifts in the relative weight given to unemployment and inflation. These shifts
could reflect shocks to the preferences of the members of the Federal Open Market Committee (FOMC), or
to the weights by which their views are aggregated.
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Our theoretical analysis starts from the assumption that monetary policy follows a general
type of Taylor rule. The rule determines a policy instrument as a function of inputs to the
rule, e.g., inflation and output, time-varying slope coefficients describing the policy response
to macroeconomic conditions, i.e., systematic monetary policy, and a stochastic intercept,
i.e., a monetary policy shock.3 In contrast, many conventional empirical identification
strategies implicitly assume a Taylor rule with time-invariant slope coefficients. Empirical
monetary policy shocks are estimated as deviations from such rule. Identification strategies
following this approach include Taylor rule-type regressions (e.g., Romer and Romer, 2004)
and monetary VAR models using exclusion restrictions (e.g., Christiano et al., 1999), sign
restrictions (e.g., Uhlig, 2005), narrative restrictions (e.g., Antolín-Díaz and Rubio-Ramírez,
2018), or external instruments (e.g., Gertler and Karadi, 2015).
Against the backdrop of a time-varying Taylor rule, we show that the empirical monetary
policy shock contains the (true) monetary policy shock but also time variation in systematic
monetary policy interacted with the inputs to the policy rule. To the extent that other
macroeconomic shocks affect the inputs to the policy rule, the empirical monetary policy
shock is contaminated by these other macroeconomic shocks.
The contaminated shocks lead to biased impulse response estimates. We formally show that
they do not identify the causal effects of (true) monetary policy shocks. We analytically
characterize three sources of bias reflecting endogeneity and attenuation. The estimated
impulse response function remains biased even if time variation in systematic monetary
policy is exogenous, i.e., if time variation in the slope coefficients of the Taylor rule is
independent of other macroeconomic shocks.
Our theoretical insights similarly apply to empirical monetary shocks identified using high-
frequency data (e.g., Gertler and Karadi, 2015). Identification rests on the implicit assump-
tion that systematic monetary policy, as perceived by financial market participants, is
constant in a time window around monetary announcements. Otherwise, the shocks are
contaminated and lead to biased estimates. Bauer and Swanson (2023a) provide evidence
consistent with such high-frequency belief changes. We contribute to this debate by showing
analytically that regressing high-frequency monetary surprise on publicly available macroe-
conomic forecasts (Bauer and Swanson, 2023b) or Greenbook forecasts (Miranda-Agrippino
and Ricco, 2021) does not resolve the contamination problem.
While previous work has noted that time-varying systematic monetary policy may complicate
the identification of monetary policy shocks (e.g., Coibion, 2012; Bauer and Swanson, 2023a;
McMahon and Munday, 2023), our paper is the first to formally characterize (i) how time-

3For evidence on fluctuations in the coefficients of the policy rule, see, e.g., Clarida, Gali, and Gertler
(2000), Orphanides (2004), Bordo and Istrefi (2023), and Hack, Istrefi, and Meier (2023).
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varying systematic monetary policy leads to contamination in the monetary policy shocks
obtained from a wide set of conventional empirical identification strategies, and (ii) how
contamination leads to biased impulse response estimates. We further go beyond previous
work by providing new empirical evidence on shock contamination and a new identification
strategy that tackles this problem.
Our empirical analysis starts from the testable prediction of the theory that conventional
monetary policy shocks are predictable by time variation in systematic monetary policy
interacted with the inputs to the policy rule. We measure time variation in systematic
U.S. monetary policy through the historical composition of hawks and doves in the Federal
Reserve’s Federal Open Market Committee (FOMC). This composition builds on the narra-
tive classification of FOMC members by Istrefi (2019). Hawks are more concerned about
inflation. Doves are more concerned about supporting employment and growth.4 We consider
two measures of systematic monetary policy, the Hawk-Dove balance across all voting FOMC
members and the balance across the four FOMC members currently with voting rights
through the annual rotation. The former is a more comprehensive measure, whereas the
latter reflects exogenous variation through the rotation.
We test our prediction using empirical monetary policy shocks as estimated in Romer and
Romer (2004), RR in the following.5 We regress the RR shock on the Taylor rule inputs
considered by RR, notably Greenbook forecasts for various macroeconomic variables and
horizons, interacted with measured fluctuations in systematic monetary policy. We consider
the original RR sample 1969-1996, the extended Wieland and Yang (2020) sample 1969-
2007, and the post-Volcker disinflation sample 1983-2007. The regression explains between
10 and 54% of the variance of RR shocks depending on sample and regressors (contempora-
neous or lagged). Using the regressors lagged by one FOMC meeting yields the highest R2,
ranging between 0.33 and 0.54. Overall, our evidence strongly suggests that RR shocks are
contaminated by fluctuations in systematic monetary policy.6

The empirical evidence motivates us to construct a new series of empirical monetary policy
shocks that are not predictable by fluctuations in measured systematic monetary policy. We
estimate an extension of the Taylor rule regression in RR that includes the interaction of

4Istrefi (2019) shows that these preferences match with narratives on monetary policy, preferred interest
rates, dissents, and forecasts of FOMC members. Bordo and Istrefi (2023) study the origins of these prefer-
ences, linking them to early-life experiences and education. Hack et al. (2023) use the Hawk-Dove classifica-
tion to study the effects of systematic monetary policy on the propagation of macroeconomic shocks.

5The RR identification strategy has been applied to the U.K. (Cloyne and Hürtgen, 2016), Germany
(Cloyne, Hürtgen, and Taylor, 2022), Norway (Holm, Paul, and Tischbirek, 2021), and many other countries
(Choi, Willems, and Yoo, 2024).

6We show that measured systematic monetary policy also has predictive power for the refined RR shocks
in Aruoba and Drechsel (2022), who use textual analysis to create sentiment indicators about the Fed staff’s
assessment of the economy to better capture the Fed’s information set about the state of the economy.
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the Hawk-Dove balance with the Taylor rule inputs. The correlation between the original
RR shock and our new shock is 0.67. The sign-correlation between the two series is lower,
meaning many shocks flip signs. The distribution of new shocks is less dispersed, with a
standard deviation of 0.23, compared to 0.34 for the RR shock.
Finally, we compare impulse responses between our new monetary policy shock and the RR
shock. We focus on the post-Volcker disinflation sample 1983-2007 because the estimated
responses to many conventional monetary policy shock series appear puzzling in this sample
(e.g., Ramey, 2016).7 For comparability, we normalize the size of both shocks to the same
impact increase of the FFR. The dynamic FFR response to our new shock is less persistent
and smaller at peak. In contrast, the decline in GDP and inflation is substantially larger
for the new shock. The trough GDP response is about twice as large for the new shock
compared to the RR shock. The differences between the responses to the two shocks are
statistically significant at the five percent level for many horizons. Importantly, the RR
shock seems to operate with a long lag, not affecting inflation up until two years after the
shock. The GDP response is broadly insignificant. In contrast, inflation and GDP respond
to our new shock with a lag of one year. Beyond the first year, the responses of inflation
and GDP are significantly different from zero at the five percent level.8 Our findings suggest
that the puzzling effects of RR shocks in the 1983-2007 sample may reflect contamination
from time-varying systematic monetary policy.
Our paper highlights the importance of accounting for the time-varying nature of systematic
monetary policy when identifying monetary policy shocks. An alternative approach addresses
time-varying systematic monetary policy by modeling it as latent variable or time-varying
coefficients, see, for example, regime-switching models (e.g., Owyang and Ramey, 2004; Sims
and Zha, 2006), time-varying coefficient monetary VAR models (e.g., Primiceri, 2005), and
Taylor rules with time-varying coefficients (e.g., Boivin, 2006; Coibion, 2012; Bauer, Pflueger,
and Sunderam, 2022). Particularly related is Coibion (2012) who uses the latter approach
to estimate a monetary policy shock series. The estimated shock is highly correlated with
the RR shock and yields similar impulse responses as the RR shock. The difference between
this finding and ours might reflect the challenge of time-varying coefficient models to identify
genuine time variation in the parameters of interest while avoiding overfitting.

7Relatedly, Barakchian and Crowe (2013) show that a variety of conventional monetary policy shock
series raise GDP when raising the federal funds rate in a post-1988 sample.

8In the 1969-2007 sample, we also find that output and inflation respond more strongly to the new shock,
albeit with a sluggish inflation response. We further find that orthogonalizing the Aruoba and Drechsel (2022)
shock with respect to systematic monetary policy leads to similar differences in the estimated responses.
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2 Identification challenge in theory

In this section, we study the identification of monetary policy shocks in an environment with
time-varying systematic monetary policy. We formally show that a wide spectrum of iden-
tification strategies to estimate monetary policy shocks yield shocks that are contaminated
by other macroeconomic shocks. Using these shocks to estimate impulse response functions
generally leads to biased estimates.

2.1 Time-varying systematic monetary policy

Departing from the common assumption that systematic monetary policy is constant across
time, we assume monetary policy follows the time-varying Taylor rule

it = α + (ϕ+ ϕ̃t)′xt + wm
t , E[ϕ̃t] = E[xt] = E[wm

t ] = E[ϕtw
m
t ] = 0, (2.1)

where it ∈ R is a policy instrument, xt ∈ Rn×1 are the n inputs of the policy rule, e.g.,
present and lagged (forecasts of) GDP and inflation, ϕ̃t ∈ Rn×1 is a vector of time-varying
coefficients describing fluctuations in systematic monetary policy, with ϕ ∈ Rn×1 the average
coefficient vector, and wm

t denotes a random monetary policy shock. We assume the inputs
in xt are mean zero and set α = −E[ϕ̃txt], which simplifies some subsequent derivations but
is not critical for our results.9

Time variations in the coefficients of the rule ϕ̃t may be driven by changes in the preferences
of central bankers that may occur for exogenous reasons, e.g., the FOMC rotation of voting
rights (Hack et al., 2023), or for endogenous reasons, e.g., monetary policy may become more
responsive to inflation when inflation is high (Davig and Leeper, 2008). Our main results
hold irrespective of whether ϕ̃t fluctuates for exogenous or endogenous reasons. Finally, we
assume that ϕt does not co-move with monetary policy shocks, E [ϕtw

m
t ] = 0, which allows

for a sharp conceptual distinction between systematic monetary policy and monetary policy
shocks, but is otherwise not critical for our results.

2.2 Conventional identification of monetary policy shocks

In this section, we show that time-varying systematic monetary policy implies that conven-
tional identification strategies yield contaminated monetary policy shocks under general

9A richer formulation of (2.1) may contain time-varying target variables, e.g., it = α + (ϕ + ϕ̃t)′(xt −
x∗

t ) + wm
t , where x∗

t ∈ Rn×1 is the target, e.g., the inflation target. Shocks to the target generate a third
type of monetary policy shock, the effect of which is correlated with fluctuations in systematic monetary
policy. In the scope of this paper, we abstract from fluctuations in the target.
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conditions. Our result derives from the above monetary policy rule, no further structural
assumptions about the macroeconomy are needed.
Many conventional identification strategies estimate monetary policy shocks as residual from
a time-invariant Taylor rule-type regression

it = b′xt + em
t , (2.2)

where the estimated regression residual, êm
t , is an empirical monetary policy shock. This is a

broad description of a wide variety of identification strategies which differ mainly in how the
coefficients in equation (2.2), and thus the residual, are estimated. Romer and Romer (2004)
propose to directly estimate (2.2) via OLS. A common alternative approach is to use mone-
tary VAR models. Irrespective of identifying assumptions and estimation method, monetary
VAR models contain an equation consistent with equation (2.2).10 This equation is typically
identified via internal instruments (Shapiro and Watson, 1988), external instruments, or
estimation methods for set-identified models. The estimation method depends on the iden-
tifying assumptions, which may be exclusion restrictions (e.g., Christiano et al., 1999), sign
restrictions (e.g., Uhlig, 2005), narrative restrictions (e.g., Antolín-Díaz and Rubio-Ramírez,
2018), or external instruments (e.g., Gertler and Karadi, 2015).
Against the backdrop of the time-varying monetary policy rule in (2.1), the time-invariant
regression in (2.2) is misspecified. In general, this misspecification leads to contamination in
the estimated monetary policy shock. The following proposition formally characterizes the
estimated empirical shocks for a given estimate b̂.

Proposition 1 (Monetary policy shock). Let monetary policy follow (2.1). Given an
estimate b̂, let êm

t be the estimated residual from (2.2). The residual satisfies

êm
t = wm

t + ωb̂
t + ωϕ̃

t

where the two wedges are defined by

ωb̂
t = (ϕ− b̂)′xt, and ωϕ̃

t = ϕ̃′
txt − E[ϕ̃′

txt].

The proof is straightforward when combining (2.1) and (2.2). The proposition characterizes
two wedges between the actual monetary policy shock wm

t and the estimated shock êm
t .

10A (structural) monetary VAR model is defined by B(L)Yt = Wt, where Yt is a vector of variables, B(L)
a lag polynomial, and Wt a vector of structural shocks. Yt includes the policy instrument it and Wt includes
a monetary policy shock, wlog the first element of Wt. Then, the first equation of the VAR is a monetary
policy rule that is identical with equation (2.2) given a corresponding specification of Yt.
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The first wedge, ωb̂
t , arises whenever the estimate b̂ does not equal the average policy coef-

ficient ϕ. This wedge may be present even in the absence of time-variation in systematic
monetary policy ϕ̃t = 0. For example, if b is estimated via OLS, a well-known endogeneity
bias arises if the monetary policy shock correlates with xt (Cochrane, 2011; Carvalho, Nechio,
and Tristão, 2021). In addition, the presence of time-varying systematic monetary policy
generates a second type of endogeneity bias. Formally, the OLS estimate b̂ of the regression
model (2.2) satisfies b̂ p−→ ϕ + E [xtx

′
t]

−1 E [xtw
m
t ] + E [xtx

′
t]

−1 E
[
xtx

′
tϕ̃t

]
.11 Whatever the

method by which (2.2) is estimated, if b̂ ̸= ϕ then the estimated monetary policy shock êm
t

correlates with xt.
The second wedge is novel. It arises because (2.2) is misspecified in the sense that fluctuations
in systematic monetary policy are not modeled. Fluctuations in ϕ̃t interacted with xt must
therefore be captured by the regression residual. The wedge disappears if we assume away
fluctuations in systematic monetary policy ϕ̃t = 0. Note that the wedge is present for
any estimate b̂. Even if b̂ = ϕ, i.e., even if the first wedge is nil, the estimated monetary
policy shock is still contaminated by other macroeconomic shocks through ϕ̃′

txt. In general,
xt reflects all present and past macroeconomic shocks. Thus êm

t is contaminated by other
macroeconomic shocks through the two wedges.

The discussion has so far omitted a popular type of conventional identification strategy. High-
frequency identification uses interest rate futures (or swaps) to approximate expectations
about future interest rates in a narrow time window around a monetary announcement in
t. A high-frequency identified monetary policy shock is constructed as êm

t = Et+∆[it+τ ] −
Et−∆[it+τ ], where Et+∆[it+τ ] denotes the period t + ∆ expectation of period t + τ interest
rates as measured by the price of an interest rate future contract. If monetary policy follows
(2.1), we can rewrite high-frequency monetary policy surprises as

êm
t = wm

t + Et+∆[(ϕ+ ϕ̃t)′xt] − Et−∆[(ϕ+ ϕ̃t)′xt]. (2.3)

If systematic monetary policy as perceived by financial market participants varies between
t − ∆ and t + ∆, then the monetary policy surprise is contaminated by variation in ϕ̃t in
interaction with xt. This result has previously been noted by Bauer et al. (2022), who also
provide evidence consistent with such contamination. Different from Bauer et al. (2022),
we show that the contamination arising from time-varying systematic monetary policy may
afflict a wide range of identification strategies.
The contamination result for the high-frequency identified monetary policy shock is closely

11In the New Keynesian model with time-varying systematic monetary policy we study in Section 2.4, it
generally holds that E

[
xtx

′
tϕ̃t

]
is non-zero.
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related to Proposition 1. Different from Proposition 1, however, it is not sufficient for
systematic monetary policy to vary at some point(s) in time. Instead, the contamination of
high-frequency identified monetary policy shocks requires that perceived systematic mone-
tary policy differs at the end of a narrow window around monetary announcements relative
to expectations at the beginning of the time window.12 Whether (perceived) systematic
monetary policy varies outside those narrow windows is irrelevant for high-frequency identi-
fication, but not for the other conventional identification strategies.
Importantly, regressing high-frequency identified monetary policy shocks on xt, whether that
is publicly available macroeconomic forecasts (Bauer and Swanson, 2023b) or Greenbook
forecasts (Miranda-Agrippino and Ricco, 2021), does not resolve the contamination problem.
A simple way to see that is to regress ϕ̃′

txt on xt. The residual will be ϕ̃′
txt − γ̂xt, with

γ̂ the estimated coefficient. In general, for any γ̂, the residual still contains variation in
ϕ̃′

txt. Hence, if high-frequency monetary policy shocks are contaminated by time-varying
systematic monetary policy, regressing the estimated shock on xt does not fundamentally
heal the problem.

2.3 Impulse response estimate

Empirical monetary policy shocks are often not the object of interest per se, but rather
the impulse response function (IRF) that is estimated based on these shocks. We analyti-
cally show that the contamination of monetary policy shocks generally leads to biased IRF
estimates, including relative IRF estimates.
Suppose we are interested in the causal effects of the monetary policy shock wm

t on some
scalar outcome zt+h, h periods after the shock, and where zt may or may not be contained
in the vector xt. Let zt follow the Moving Average (MA) process

zt = γz +
∞∑

h=0

(
δh

zw
m
t−h + vh

z,t−h

)
, E[vh

z,t−h] = E[wm
t−hv

h
z,t−j] = 0 ∀h, j, (2.4)

where δh
z denotes the causal effect of wm

t on zt+h and γz is a constant. The second term,
vh

z,t+h, may contain, for example, the linear effects of macroeconomic shocks other than the
monetary policy shock, and the effects of all macroeconomic shocks interacted with time-
varying systematic monetary policy ϕ̃t (see Section 2.4 for an example). When the true
causal effect of wm

t on zt+h depends on systematic monetary policy, then δh
z can be defined

as the best linear prediction and vh
z,t+h contains the residual non-linear effects of wm

t . The
12The high-frequency shocks can also be contaminated if perceived systematic monetary policy remains

unchanged around the monetary announcement but expectations over xt update, the information effect of
monetary policy (e.g., Nakamura and Steinsson, 2018; Jarociński and Karadi, 2020).
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MA process is general in the sense that we put no restriction on what is contained in vh
z,t+h

other than assuming E[wm
t−hv

h
z,t−j] = 0 ∀h, j. It will be convenient to rewrite (2.4) as

zt+h = γz + δh
zw

m
t + ṽh

z,t+h, ṽh
z,t+h =

∞∑
j=0

vh
z,t+h−j +

∞∑
j=0, j ̸=h

δh
zw

m
t+h−j (2.5)

and it follows from (2.4) that E[wm
t ṽ

h
z,t+h] = 0 ∀h ≥ 0.13

Next, suppose an econometrician aims to estimate the effects of monetary policy via the
local projection

zt+h = ch
z + dh

z ê
m
t + uh

z,t+h, (2.6)

where êm
t denotes the estimated monetary policy shock as described in Proposition 1.14 If

êm
t = wm

t , the econometrician could easily uncover the causal effect via the OLS estimate
d̂h

z

p−→ δh
z . In general, however, the estimate d̂h will be biased, as the following proposition

shows.

Proposition 2 (IRF bias). Let monetary policy follow (2.1) and zt follow the MA process
in (2.4). Consider the local projection in (2.6) with êm

t as described in Proposition 1. As
T → ∞, the OLS estimate d̂h

z of the local projection satisfies

d̂h
z

p−→ δh
z + ϑb̂

z + ϑϕ̃
z + ϑa

z

where the three bias terms are defined by

ϑb̂
z = E

[
(êm

t )2
]−1 (

ϕ− b̂
)′ (

δh
zE [xtw

m
t ] + E

[
xtṽ

h
z,t+h

])
,

ϑϕ̃
z = E

[
(êm

t )2
]−1 (

δh
zE

[
ϕ̃′

txtw
m
t

]
+ E

[
ϕ̃′

txtṽ
h
z,t+h

])
,

ϑa
z = E

[
(êm

t )2
]−1

δh
z

(
E
[
(wm

t )2
]

− E
[
(êm

t )2
])
.

The proof is straightforward and omitted here. We first discuss the three bias terms in
general and then discuss an extension of the local projection.
The first bias ϑb̂

z arises from the wedge ωb̂
t and is zero if b̂ = ϕ or if E [xtw

m
t ] = E

[
xtṽ

h
z,t+h

]
= 0.

For example, a sufficient condition is that the monetary policy shock wm
t and all other

macroeconomic shocks that affect zt+h are uncorrelated with xt. We argue that strong
assumptions are required to satisfy both conditions. For example, in monetary VAR models,

13We assume ϕ̃t, xt, zt, ṽh
z,t+h jointly follow a stable and ergodic process with finite fourth moments.

14We further consider an extension of the local projection in (2.6) that includes lagged control variables.
This leads to broadly similar results, as we discuss further below.
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xt commonly includes endogenous variables such as period t inflation and GDP, where a
period is commonly a month or a quarter. Assuming a zero response of these variables to
a monetary policy shock in the same period is a strong assumption. In contrast, under the
Romer and Romer (2004) strategy, xt includes forecasts shortly before a monetary policy
decision in which wt realizes. In that case, E [xtw

m
t ] = 0 seems plausible. However, the

second condition still requires a strong assumption. The outcome variable zt+h is commonly a
macroeconomic variable observed at a monthly or quarterly frequency. Assuming persistence,
the residual ṽh

z,t+h then contains all period t macroeconomic shocks other than wm
t . For

example, an oil supply shock at the beginning of the period will affect the outcome zt+h but
also the forecasts in xt if the monetary policy meeting was later in the period. Overall, we
require strong assumptions to eliminate the first bias ϑb̂

z = 0.
The second bias ϑϕ̃

z arises from the wedge ωϕ̃
t , which captures the misspecification of the linear

Taylor rule regression. The bias depends on two expectations, E
[
ϕ̃′

txtw
m
t

]
and E

[
ϕ̃′

txtṽ
h
z,t+h

]
.

Similarly to the first wedge, the first expectation is plausibly zero in the case of a Romer
and Romer (2004) identification strategy. The second expectation, however, is generally
non-zero. Consider again an oil supply shock at the beginning of the period, before the
monetary policy meeting and associated forecast xt. The shock correlates with xt, but its
effect on zt+h also generally depends on ϕ̃t. Therefore, the second expectation is non-zero.
In monetary VAR models, both expectations are generally non-zero, for similar reasons as
discussed above. Hence, the second bias is present unless we impose strong assumptions.
The third term, ϑa, can be interpreted as a type of attenuation bias. If the estimated
monetary policy shock satisfies E [(êm

t )2] > E [(wm
t )2], the estimate d̂h

z will be biased toward
zero relative to δh

z . However, given that wm
t may correlate with the wedges ωb̂

t and ωϕ̃
t , the

estimated monetary policy shock is not classical measurement error. If E [(êm
t )2] < E [(wm

t )2],
the estimate d̂h

z will be biased away from zero. Even if the first two biases are zero, the third
bias remains non-zero as long as ϕ̃t ̸= 0∀t.
The local projection, as specified in (2.6), is highly parsimonious, not including any endoge-
nous control variables. Consider instead the extended local projection zt+h = ch

z + dh
z ê

m
t +

Γ(L)Yt + uh
z,t+h, where Γ(L) = ∑∞

i=0 ΓiL
i is a lag polynomial, and Yt a vector of control

variables. The additional control vector means we need to replace êm
t and ṽh

z,t+h by projec-
tions of these variables on {Yt−1, Yt−2, ...} in the bias terms in Proposition 2. While the
controls may quantitatively change the bias, they do not eliminate the bias. In fact, in the
above discussion of the bias terms, we have discussed bias arising from contemporaneous
macroeconomic shocks. This bias cannot disappear by regressing on lagged variables.

In many empirical applications, the econometrician aims to identify the relative effect of
monetary policy shocks rather than its absolute effect. If δz1 is the absolute causal effect
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of wm
t on z1t, the relative causal effect is δz1/δz2 , where z2 denotes another outcome. For

example, it is common to study the effects of monetary policy shocks that raise the nominal
interest rate by 25 or 100 basis points. This requires dividing the response of some outcome
variable of interest by the interest rate response. For many empirical questions, a bias in the
estimated absolute effect may be acceptable as long as the bias cancels out in the estimated
relative effect. The following proposition provides a condition for the relative estimate to be
unbiased.

Proposition 3 (Relative IRF bias). Let monetary policy follow (2.1) and z1t and z2t

follow MA processes as in (2.4). An econometrician estimates two local projections, as in
(2.6), to estimate the effects of êm

t , the OLS residual based on (2.2), on z1t+h and z2t+h. The
two OLS estimates d̂h

z1 and d̂h
z2 satisfy

d̂h
z1

d̂h
z2

p−→
δh

z1

δh
z2

if and only if
(
ϕ− b̂

)′
E
[
xtṽ

h
z1,t+h

]
+ E

[
ϕ̃′

txtṽ
h
z1,t+h

]
δh

z1

=

(
ϕ− b̂

)′
E
[
xtṽ

h
z2,t+h

]
+ E

[
ϕ̃′

txtṽ
h
z2,t+h

]
δh

z2

.

The condition under which the relative IRF is not biased is a knife-edge condition, which is
generally not satisfied. A sufficient condition is b̂ = ϕ and ϕ̃t = 0, which also yields unbiased
absolute IRF estimates.

2.4 A non-linear New Keynesian model

We revisit the results in Proposition 1-3 through the lens of a stylized model. Whereas the
propositions provide general conditions for contamination and bias, the model illustrates the
bite of the general result and allows us to discuss the bias in special cases of the model.
We consider a dynamic New Keynesian model in which systematic monetary policy may
fluctuate for exogenous and endogenous reasons. Monetary policy follows the Taylor rule

it = α + (ϕ+ ϕ̃t)πt + xm
t , (2.7)

where xm
t follows a stable AR(1) process xm

t = ρm log xm
t−1 +wm

t , where wm
t

iid∼ (0, σ2
m) denotes

a monetary policy shock. As above, we conveniently set α = −E[ϕ̃tπt]. A second exogenous
driving variable is technology, denoted by xa

t , which also follows a stable AR(1) process
xa

t = ρa log xa
t−1 +wa

t , where wa
t

iid∼ (0, σ2
a) denotes a technology shock. Systematic monetary
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policy fluctuates according to a stable AR(1) process

ϕ̃t = ρϕϕ̃t−1 + ψaw
a
t + qt, (2.8)

which features endogenous movements in response to wa
t and an exogenous policy shifter

qt
iid∼ (0, σ2

q ).
The exogenous drivers of the model are {wm

t , w
a
t , qt}, which we assume to be mutually inde-

pendent. Absent time-varying systematic monetary policy, the model is a textbook New
Keynesian model (Galí, 2015). Based on Hack et al. (2023), the approximate equilibrium
dynamics of GDP yt and inflation πt follow

yt = ay + by
mx

m
t + by

ax
a
t + cy

mx
m
t ϕ̃t + cy

ax
a
t ϕ̃t + dyϕ̃t, (2.9)

πt = aπ + bπ
mx

m
t + bπ

ax
a
t + cπ

mx
m
t ϕ̃t + cπ

ax
a
t ϕ̃t + dπϕ̃t. (2.10)

Given this process, the residual in equation (2.5) for z = y is

ṽh
y,t+h =by

m

(
ρh+1

m xm
t−1 +

h∑
i=1

ρh−i
m wm

t+i

)
+ by

ax
a
t+h + cy

m

(
xm

t+hϕ̃t+h − E[xm
t+hϕ̃t+h]

)
+ cy

a

(
xa

t+hϕ̃t+h − E[xa
t+hϕ̃t+h]

)
+ dyϕ̃t+h. (2.11)

We next use the model to revisit Proposition 2. In general, it is straightforward to verify
that the estimate d̂h

y is biased and that all three bias terms are non-zero.
The first bias term, ϑb̂, and thus both expectations E [πtw

m
t ] and E

[
πtṽ

h
y,t+h

]
are zero only

under strong assumptions, such as assuming inflation does not respond to monetary policy
shocks, or technology shocks, or systematic monetary policy. The second bias term, ϑϕ̃,
requires similarly extreme assumptions to be zero. For example, if the inflation rate indeed
depends on xm

t ϕ̃t and xa
t ϕ̃t, i.e., if cπ

m, c
π
a ̸= 0, both expectations E

[
ϕ̃′

tπtw
m
t

]
and E

[
ϕ̃′

tπtṽ
h
y,t+h

]
are non-zero. The third bias term, ϑa, is even more robust. It is generally non-zero whenever
ϕ̃t varies over time. Note that whether or not fluctuations in ϕ̃t are fully exogenous, ψa = 0,
or allow for endogenous movements is irrelevant for the question of whether d̂h

y is biased.
We next consider a special case, an environment without persistence, ρm = ρa = ρϕ = 0. For
h = 0, both expectations in ϑb̂ and ϑϕ̃ remain non-zero, respectively. For h > 0, the second
expectations equal zero, respectively. However, bias remains through the first expectations
in ϑb̂ and ϑϕ̃, respectively, and through the third bias, ϑa. For h > 0, the causal effect is
δh

y = 0 and bias means we estimate a non-zero effect.
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3 Empirical evidence on the systematic origins of
monetary policy shocks

In this section, we provide empirical evidence suggesting that U.S. monetary policy shocks
as identified by the Romer and Romer (2004) (henceforth RR) approach are partly explained
by fluctuations in the Federal Reserve’s systematic monetary policy.

3.1 RR monetary policy shocks

The RR shock is estimated as the residual êrr
τ when estimating a Taylor rule-type regression

iτ = a+ b′xτ + err
τ , (3.1)

via OLS and where τ denotes FOMC meetings. We have reproduced (2.2) here for the
convenience of the reader. RR specify iτ as the change in the intended federal funds rate
between two FOMC meetings. The right-hand side xτ includes 18 variables: the Greenbook
forecast of output growth and inflation, prepared in advance of FOMC meeting τ , respectively
for the quarter preceding the FOMC meeting, the current and the two subsequent quarters;
the revision of all 8 Greenbook forecasts relative to the same forecasts prepared for the
preceding FOMC meeting; the Greenbook forecast of the unemployment rate in the current
quarter; and the intended federal funds rate before FOMC meeting τ . We use the estimated
monetary policy shocks êrr

τ and associated regressors xτ from Wieland and Yang (2020) who
extend the RR sample 1969-1996 to 1969-2007.15

3.2 Measuring time-varying systematic monetary policy

We describe two time series of systematic monetary policy, the Hawk-Dove balance among
all Federal Open Market Committee (FOMC) members and the Hawk-Dove balance among
the subset of rotating FOMC members. The subsequent description will be relatively brief,
with further details and discussion available in Hack et al. (2023).
The FOMC has authority over U.S. monetary policy and consists of 12 members, among
which four members serve one-year terms on a rotating basis. We use the narrative classifi-
cation of FOMC members as hawks and doves in Istrefi (2019). The hawk-dove classification
is a panel that tracks FOMC members over time at FOMC meeting frequency. Hawks are

15We end the sample just before the Great Financial Crisis, thus avoiding periods for which policy rules
may have changed fundamentally. Likewise, we avoid the period when interest rates reached the effective
lower bound. The FFR was kept constant from December 2008 to December 2015 at the zero lower bound.
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perceived to be more concerned with inflation, while doves are more concerned with employ-
ment and growth.16 Istrefi (2019) shows that the perceived policy preferences match well
with policy tendencies that are unknown in real-time to the public, as expressed by preferred
interest rates, with forecasting patterns of individual FOMC members, and with dissents. In
addition, Bordo and Istrefi (2023) show that the FOMC members’ educational background
and early life experience have predictive power for individual policy preferences.
To measure variation in systematic monetary policy over time, we aggregate the individual
FOMC member preferences into a Hawk-Dove balance for each meeting (cf. Istrefi, 2019).
We do so because the nature of monetary policy-making involves the aggregation of diverse
individual policy preferences in a collective decision. We first map the qualitative hawk-
dove classification on a numerical scale for FOMC member i at meeting τ ranging from
Hawkiτ =+1 for consistent hawks, +1/2 for hawks who have been doves before, 0 for
unclassified member, and -1/2 (-1) for swinging (consistent) doves.17 We then construct
the aggregate Hawk-Dove balance in the FOMC by

HawkF
τ = 1

|Fτ |
∑

i∈Fτ

Hawkiτ (3.2)

where Fτ denotes the (full) set of FOMC members i at meeting τ .18

The Hawk-Dove balance may respond to the state of the economy. For example, the Federal
Reserve may become more dovish in response to high unemployment or more hawkish in
response to high inflation (cf. Davig and Leeper, 2008). Systematic monetary policy may also
change in response to political pressure (e.g., Abrams, 2006; Bianchi, Gómez-Cram, Kind,
and Kung, 2023). To address the endogeneity of the Hawk- Dove balance, we construct
the Hawk-Dove balance among the set of FOMC members who currently have voting rights
through the annual rotation.19 The mechanical nature of the rotation renders it orthogonal
to the state of the economy and political cycles. Formally, the Rotation Hawk-Dove balance
is defined by

HawkR
τ = 1

|Rτ |
∑

i∈Rτ

Hawkiτ , (3.3)

16Among the 147 FOMC members between 1960 and 2023, 129 are classified as hawk or dove. The news
coverage for the remaining 18 members is insufficient for classification. 95 classified members are consistently
hawks or doves, while the others switch camps at least once. The 34 swinging members switch camps at
1.8% of member-meeting pairs.

17Hack et al. (2023) show that alternative aggregation schemes lead to similar empirical findings.
18Occasionally, |Fτ | ≤ 12 because of absent members and vacant positions.
19This was originally proposed in Hack et al. (2023) as instrument for systematic monetary policy.
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Figure 1: Hawk-Dove balance in the FOMC

Notes: The solid red line shows the aggregate Hawk-Dove balance of the full FOMC HawkF
τ at FOMC meeting

frequency from 1960 through 2023. The dashed red line shows the aggregate Hawk-Dove balance of the rotation
panel HawkR

τ . Grey bars indicate NBER dated recessions.

where Rτ denotes the set of rotating FOMC members at FOMC meeting τ .20 While HawkF
τ

is a more comprehensive measure of systematic monetary policy, HawkR
τ has the advantage

of reflecting exogenous variation through the rotation.
We present the evolution of HawkF

τ and HawkR
τ from 1960 through 2023 in Figure 1. Both

balances vary considerably, featuring hawkish and dovish majorities. The variation reflects
the turnover of rotating FOMC members, the turnover of non-rotating FOMC members,
and changes in policy preferences of incumbent FOMC members. The correlation between
HawkF

τ and HawkR
τ is 0.60, see Table A.1 for further descriptive statistics. Fluctuations in

HawkR
τ are relatively more short-lived, reflecting the annual rotation of voting rights.

The Hawk-Dove balance is informative about systematic monetary policy. First, the classi-
fication matches well with narratives of monetary policy in the U.S. (Istrefi, 2019). Second,
a hawkish FOMC responds to higher inflation by raising the policy rate more aggressively
(Bordo and Istrefi, 2023; Hack et al., 2023). Finally, a hawkish FOMC tightens monetary
policy more aggressively in response to expansionary government spending shocks, leading
to a significantly dampened GDP expansion (Hack et al., 2023).

20In our sample, |Rτ | = 4 for 625 out of 634 FOMC meetings and |Rτ | = 3 for the remaining meetings.
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3.3 Predictability of RR shocks

In this section, we show that RR monetary policy shocks are predictable by fluctuations in
measured systematic monetary policy in a way that supports our theoretical results.
If systematic monetary policy is time-varying as in (2.1), the estimated residuals êrr

τ based on
the regression in (2.2) will include fluctuations in systematic monetary policy multiplied with
the inputs of the Taylor rule, the term ϕ̃τxτ in Proposition 1. Hence, a testable prediction
of a time-varying Taylor rule is that fluctuations in measured systematic monetary policy
multiplied with xτ partly explain conventional RR shocks êrr

τ . To test this prediction we
estimate the following regression

êrr
τ =β0 + β′

1 xτ−pHawkτ−p + β′
2 xτ−p∆Hawkτ−p

+ β′
3 Hawkτ−p + β′

4 ∆Hawkτ−p + β′
5 xτ−p + uτ , (3.4)

where τ denotes an FOMC meeting, êrr
τ is the RR shock and xτ the RR regressors, both

as defined in Section 3.1, Hawkτ is either HawkF
τ or HawkR

τ , and ∆Hawkτ is the first
difference of Hawkτ .21 We consider contemporaneous regressors (p = 0) or lags up to two
meetings (p = 1, 2). Our motivation to consider lags is to capture that it may take time for
FOMC members to affect policy decisions (Hack et al., 2023).22

Table 1 presents the R2 for various specifications of (3.4), as well as the p-values for the
null hypothesis that all coefficient estimates are jointly zero, estimated for different sample
periods. Across regression specifications, we obtain an R2 between 0.1 and 0.54. Using a
one-meeting lag (p = 1) yields the largest R2 ranging from 0.33 to 0.54. In other words, a
sizeable fraction of the variation in RR shocks can be explained by past variables, irrespective
of the type of Hawk-Dove balance and the three sample specifications. For p = 1, we can
reject the null hypothesis that all coefficient estimates are zero at the 1% significance level.
Except the post-Volcker sample, the R2 is lower for p = 0, and the R2 is also lower for
p = 2. Our finding that lagged regressors raise predictability is consistent with the nature
of decision-making in the FOMC.
We next investigate the contribution of the individual regressors for explaining variation in

21In Hack et al. (2023), the rotation Hawk-Dove balance is proposed as an instrument to provide causal
evidence on the state-dependent effects of macroeconomic shocks with variation in respect to systematic
monetary policy. In this paper, we do not use the rotation Hawk-Dove balance explicitly as an instrument
because the high number of regressors in our empirical application would render an IV approach unreliable.

22For example, former Governor Laurence Meyer remarks: I came to see policy decisions as often evolving
over at least a couple of meetings. The seeds were sown at one meeting and harvested at the next. [...]
Similarly, while in my remarks to my colleagues it sounded as if I were addressing today’s concerns and today’s
policy decisions, in reality I was often positioning myself, and my peers, for the next meeting. Laurence Meyer
(2004), A Term at the Fed: An Insiders’ View, Harper Business.
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Table 1: Explaining RR shocks by systematic monetary policy

HawkF
τ HawkR

τ

Sample 69-07 69-96 83-07 69-07 69-96 83-07

(a) Contemporaneous FOMC meeting (p=0)

R2 0.098 0.133 0.432 0.167 0.216 0.464

p-value 0.248 0.239 0.000 0.003 0.000 0.000

T 354 266 200 354 266 200

(b) One FOMC meeting lag (p=1)

R2 0.333 0.430 0.451 0.429 0.541 0.443

p-value 0.002 0.002 0.000 0.000 0.000 0.000

T 350 262 200 350 262 200

(c) Two FOMC meetings lag (p=2)

R2 0.236 0.313 0.373 0.279 0.360 0.422

p-value 0.000 0.000 0.000 0.000 0.000 0.000

T 348 260 200 348 260 200

Notes: The table shows results from regressions based on (3.4). The rows of the three subtables show R2, the
p-values for the null hypothesis that all coefficient estimates are jointly zero, and the number of observations T .
The three left columns show results for the Hawk-Dove balance across all FOMC members, the three right columns
for the Hawk-Dove balance across all rotating FOMC members with voting rights. Columns one to three show
differ by the sample period between 1969-2007, 1969-1996, and 1983-2007, and analogously for columns four to six.
The three subtables differ by the specification of FOMC meeting lag p.

RR shocks. We focus on the regression specification of (3.4) that yields the largest (total) R2

in Table 1, i.e., HawkR
τ−p and p = 1, but we obtain similar results for the other specifications.

Table 2 reports the R2 and p-value when regressing the RR shock êrr
τ separately on subsets

of the regressors included in equation (3.4). The first key takeaway is that the interactions
between xτ−1 and, respectively, HawkR

τ−1 and ∆HawkR
τ−1 account for the bulk of the total

R2. Both HawkR
τ−1 and ∆HawkR

τ−1 are informative (in interaction with xτ−1), with the
latter having more predictive power. The second key takeaway is that the (non-interacted)
level of HawkR

τ−1 and ∆HawkR
τ−1 has practically no predictive power for the RR shock.

Importantly, this finding further supports the interpretation of the Hawk-Dove balance as
capturing variation in systematic monetary policy. If, in contrast, the Hawk-Dove balance
also captured significant information about the intercept of the monetary policy rule, we
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Table 2: Explaining RR shocks by subsets of regressors

Interactions Levels

Sample 69-07 69-96 83-07 69-07 69-96 83-07

(a) HawkR
τ−1 × xτ−1 (b) HawkR

τ−1 & ∆HawkR
τ−1

R2 0.112 0.138 0.117 0.006 0.010 0.002

p-value 0.087 0.058 0.034 0.370 0.330 0.826

(c) ∆HawkR
τ−1 × xτ−1 (d) xτ−1

R2 0.248 0.289 0.065 0.090 0.133 0.255

p-value 0.000 0.000 0.000 0.031 0.005 0.000

(e) All interactions (f) All level terms

R2 0.341 0.399 0.193 0.096 0.151 0.255

p-value 0.000 0.000 0.000 0.039 0.001 0.000

T 350 262 200 350 262 200

Notes: The table shows results from regressions based on (3.4), considering different subsets of the regressors.
The rows of the three subtables show R2 and the p-values for the null hypothesis that all coefficient estimates
are jointly zero, and the number of observations T . The three left columns show results for the interactions
between the Hawk-Dove balance and xτ−1, the three right columns show the results for the non-interacted (level)
regressors. Columns one to three show differ by the sample period between 1969-2007, 1969-1996, and 1983-2007,
and analogously for columns four to six.

could expect the level of the Hawk-Dove balance to have predictive power for the RR shock.
Finally, the regressor xτ−1 has some predictive power in explaining RR shocks, in particular
for the post-Volcker sample. The results in Table 2 differ by little across the three samples.
Overall, our results suggest that a substantial fraction of the conventional RR shocks can
be explained by variation in systematic monetary policy. Our evidence thus supports the
notion that empirical monetary policy shocks have systematic monetary policy origins.
A potential concern with our results is that the large set of regressors we include might lead
to overfitting. We may mechanically absorb variation, although there is no systematic rela-
tionship in the data. To address this concern, we use a Lasso estimation, which minimizes
the sum of squared residuals (as in OLS) but additionally penalizes the number of estimated
parameters to keep the set of included regressors small. We choose the penalization param-
eter to gradually increment the number of regressors from one to five. We present the results
for the sample 1969 - 2007 in Table B.1, in Appendix B. We find that five (scalar) regressors
are sufficient to yield an R2 of 0.15. All five regressors selected by the Lasso estimation
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involve interactions of elements in xτ−1 with ∆HawkR
τ−1. The elements included are one

Greenbook forecasts of output growth, two inflation forecasts, and two inflation forecast
revisions.
In related work, Aruoba and Drechsel (2022) refine the RR shock by using a large vector xt

with the goal of better capturing the Fed’s information set about the state of the economy.
They use textual analysis to create sentiment indicators about the Fed staff’s assessment
of the economy before FOMC meetings. The sentiment indicators are used as additional
regressors in Taylor rule-type Ridge regression. We regress their shock on our right-hand side
variables in (3.4). We find an R2 between 0.26 and 0.35 depending on lag order (p = 0, 1, 2)
and the type of Hawk-Dove balance. We obtain the largest R2 for p = 2 and HawkR

τ . Thus,
even their refined shock is predictable and, hence, may be contaminated by time variation
in systematic monetary policy.

4 A new monetary policy shock

The results in Section 3 motivate us to construct a new monetary policy shock that is
no longer predictable by measured systematic monetary policy. The shock is the estimated
residual when regressing policy rate changes on Greenbook forecasts as well as the interaction
between Greenbook forecasts and measured time variation in systematic monetary policy.
We find that our new monetary policy shocks affect output and inflation with a substantially
shorter delay, more strongly, and at higher statistical significance compared to the RR shock,
in particular for a post-Volcker sample.

4.1 Shock identification

We estimate a new monetary policy shock series via the augmented Taylor rule regression

iτ =β0 + β′
1xτ + β′

2xτ−1 + β′
3 xτ−1Hawkτ−1 + β′

4 xτ−1∆Hawkτ−1

+ β′
5 Hawkτ−1 + β′

6 ∆Hawkτ−1 + enew
τ , (4.1)

where the policy instrument iτ and Greenbook forecast xτ are specified as in Section 3
and Hawkτ is the Rotation Hawk-Dove balance. Our new monetary policy shock is the
estimated residual ênew

τ when estimating (4.1) via OLS.23 The specification nests the original
Romer and Romer (2004) regression if we restrict βj = 0 ∀j > 1, in which case we denote

23While we follow RR in using OLS, this leads to endogeneity bias as discussed in Section 2. However,
Carvalho et al. (2021) argue that the endogeneity bias is quantitatively negligible. Finally note that esti-
mating (4.1) via IV is practically challenging because it would require a large number of instruments.
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Figure 2: Time series of monetary policy shocks

Notes: The solid black line shows the RR shock êrr
τ based on the regression in (4.1) when restricting βj = 0 ∀j > 1.

The dotted red line shows the new shock ênew
τ based on the regression in (4.1). The sample period is 1969 through

2007. Grey bars indicate NBER recession.

the estimated residual by êrr
τ . Our baseline sample to identify the shock is the full sample

from 1969 through 2007. We discuss the robustness of our results for alternative samples in
Section 4.3.
Figure 2 shows the new shock series (red dotted line) in comparison with the original RR
shock series (black solid line). The new series is substantially less dispersed than the RR
shock with the standard deviation falling from 0.34 to 0.23 (see Table 3). The overall
correlation between new and RR shock is 0.67. The correlation between the sign of both
shocks is 0.42, meaning new and RR shock frequently have the opposite sign. Both the new
shock and the RR shock exhibit practically no serial correlation.24

The two shock series most visibly differ during 1979-1982 with our new shock being smaller
in magnitude. RR argue that their shocks in this period reflect changes in the Federal
Reserve’s operating procedures and an increased distaste for inflation. In fact, we do observe
a relatively hawkish FOMC, in particular among rotating FOMC members (see Figure 1).
Hence, a plausible reason for our new shocks being smaller is that accounting for variation in
systematic monetary policy better explains variation in monetary policy during this episode.

24For four FOMC meetings, xτ is missing because not all Greenbook forecasts are available. The regression
for the new shock (4.1) includes xτ−1 creating four additional missing observations.
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Table 3: Descriptive statistics of monetary policy shocks

Mean Median SD Autocorr Corr Sign-corr Min Max T

RR shock 0.00 -0.01 0.34 0.12 - - -3.25 1.86 354

New shock -0.00 -0.01 0.23 -0.09 0.67 0.42 -1.03 1.03 350

Notes: The table shows descriptive statistics for the new shock (ênew
τ ) and the RR shock (êrr

τ ) at FOMC meeting frequency
from 1969 through 2007. “Autocorr” refers to the meeting-over-meeting autocorrelation. “Corr” refers to the correlation
between new and RR shock. “Sign-corr” refers to the correlation of the sign of both shock series.

4.2 Impulse responses

We next compare impulse response estimates for alternative monetary policy shock series.

Econometric framework. We estimate impulse responses using the local projections

zt+h − zt−1 = αh
z + βh

z êt + Γ Yt + vh
t+h, h = 0, . . . , H, (4.2)

where zt is an outcome variable of interest. The main outcomes of our analysis are the
federal funds rate, the inflation rate, and log real GDP. The monetary policy shock êt is
either the new shock ênew

t or the RR shock êrr
t . The control vector Yt includes twelve lags

of the federal funds rate, the inflation rate, the log of real GDP, and a linear time trend. A
period t is a month. This is a common choice in the related literature and limits the need
to aggregate the monetary policy shocks.25 Monthly log real GDP and the monthly GDP
deflator inflation rate are obtained by interpolation using the procedure of Chow and Lin
(1971).26 Section 4.3 explores the sensitivity of our results on monthly interpolation and the
specification of the control vector. The baseline sample of our analysis is 1983 through 2007,
so post-Volcker disinflation and pre-Great Recession. We consider this sample particularly
interesting because the estimated responses to many conventional monetary policy shock
series appear implausible in such sample (e.g., Ramey, 2016). This sample further avoids
potential structural breaks around the Great Inflation episode. Section 4.3 explores the
sensitivity of our results regarding the sample.

Responses of main outcomes. Figure 3 presents the estimated responses of our main
outcome variables, the federal funds rate, the inflation rate, and log real GDP, to the new

25Only 4 months (all between 1969 through 1971) contain more than one FOMC meeting with a monetary
policy shock êτ , while a large fraction of quarters across the entire sample contain multiple êτ . In months in
which we observe at least one êτ , we construct êt as the sum of êτ contained in t. Otherwise, we set êt = 0.

26The related monthly series we use for interpolating GDP and the GDP deflator are CPI, industrial
production, one-year treasury yield, and excess bond premium.
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shock and the RR monetary policy shock. The key takeaway is that the two shocks differ
substantially in the estimated lag of monetary policy transmission, the magnitude of the
responses, and statistical significance.
The two panels in the first row of Figure 3 show the estimated response of the federal
funds rate (FFR) to the two shocks. While the left-hand side panel shows the 68% and
95% confidence bands for the new shock, the right-hand side panel shows the corresponding
confidence bands for the RR shock. The confidence bands are based on heteroskedasticity and
autocorrelation consistent estimators. Both shocks are normalized to increase the FFR by
100 basis points on impact. This facilitates comparability of the inflation and GDP responses.
The dynamic FFR responses differ markedly in magnitude and persistence. The new shock
leads to a peak FFR response of 2.4 percentage points after 6 months and quickly reverts to
zero. The RR shock leads to a peak FFR response of 3.7 percentage points after 8 months
and remains significantly above zero for 18 months. Figure 4(a) shows that the difference
between the FFR responses is statistically significant at the 5% level for some horizons after
15 months, precisely where the RR shock has more persistent effects.27 Overall, the new
monetary policy shock leads to a less strong and more transitory dynamic federal funds rate
response than the RR shock. If both shocks are well identified, we might expect a larger
demand contraction from the RR shock.
The second row of Figure 3 shows the estimated responses of real GDP. The new shock leads
to a contraction of GDP that is mostly significant at the 5% level between 14 months and
37 months after the shock. In contrast, the GDP response to the RR shock is statistically
insignificant at the 5% level for all horizons we consider. If we use the (much) lower 32%
significance standard, then the new shock leads to a significant GDP contraction starting
8 months after the shock, while it takes 20 months for the RR shock. In addition, the
RR shock generates a short-lived significant expansion around 6 months after the shock (an
output puzzle). The difference between the two GDP responses is statistically significant for
most horizons between 6 and 20 months, see Figure 4(b). The shocks further differ strongly
in the magnitude of the GDP response. Despite the larger and more persistent FFR increase
for the RR shock, the GDP contraction is substantially larger for the new shock. The trough
response is -3.2 percent for the new shock and -1.4 percent for the RR shock.
Finally, the third row shows the estimated responses of inflation. Arguably, the most striking
finding of Figure 3 is the difference in the lag of monetary policy affecting inflation. The
inflation response becomes 5% significant only after 27 months for the RR shock but after 13
months for the new shock. Our new shock shows that monetary policy shocks affect inflation

27The standard errors for the difference across impulse responses are constructed by estimating both local
projections as seemingly unrelated regressions and estimating the joint covariance matrix via Driscoll-Kraay.

22



Figure 3: Responses of main outcomes to monetary policy shocks

(a) Federal funds rate

(b) Real GDP

(c) Inflation

Notes: The figure shows responses of the federal funds rate, log real GDP and the inflation rate to a monetary policy shock
based on the local projection as specified along with (4.2). The new monetary policy shock is identified as the residual from the
Taylor rule regression in (4.1) whereas the conventional monetary policy shock is based on the same regression when bj = 0 for
j > 1, as in Romer and Romer (2004). The shaded areas indicate 68% and 95% confidence bands using standard errors robust
to serial correlation and heteroskedasticity.
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Figure 4: Response to new shock “minus” response to RR shock

(a) FFR (b) Real GDP (c) Inflation

Notes: The figure shows the differences across impulse responses for the federal funds rate, log real GDP and the inflation
rate to a monetary policy shock based on the local projection as specified along with (4.2). The difference is computed as the
response to the new shock minus the response to the old shock for each outcome, respectively. The new monetary policy shock
is identified as the residual from the Taylor rule regression in (4.1) whereas the conventional monetary policy shock is based on
the same regression when bj = 0 for j > 1, as in Romer and Romer (2004). The shaded areas indicate 68% and 95% confidence
bands using standard errors robust to serial correlation and heteroskedasticity.

at substantially shorter lags than what the RR shock suggests. The difference between the
inflation responses is particularly significant between 12 and 28 months, see Figure 4(c). We
further uncover some differences in magnitudes. The trough response is -2.7% for the RR
shock and -2.2% for the new shock.
Overall, our results suggest that accounting for time variation in systematic monetary policy
is critically important when identifying monetary policy shocks. Disregarding variation in
systematic monetary policy may lead to strongly biased impulse response estimates and an
inaccurate assessment of the effectiveness of monetary policy. It may further bias analyses
using impulse responses estimates to estimate DSGE models, construct policy counterfac-
tuals, or investigate the optimality of monetary policy.

Further outcome variables. In Figure 5, we extend the analysis to further outcome vari-
ables, notably capacity utilization, unemployment, hours worked, consumption, inventories,
and a credit spread. The variables are informative about the transmission mechanism of
monetary policy. In addition, they further show that accounting for systematic monetary
policy matters.
In response to the new shock, we find a significant decrease in capacity utilization, increase
in the unemployment rate, and decrease in hours worked. All measures suggest an increase
of slack in the economy. The responses to the RR shock are broadly similar. However,
they suggest (again) a substantially longer lag of monetary policy and the responses are
less precisely estimated. We report the differences of responses and confidence bands in
Figure C.1 in Appendix C. The response of consumption expenditures to the new shock
is much quicker and occurs within the first six months. Beyond the short-run, however,
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Figure 5: Response of further outcomes to monetary policy shocks

(a) Capacity utilization (b) Unemployment rate (c) Hours

(d) Consumption (e) Inventories (f) Credit spread

Notes: The figure shows responses of capacity utilization, the unemployment rate, log consumption expenditures, log business
inventories, log hours (in manufacturing), and credit spreads (BAA- minus AAA-rated corporate bond yield) to a monetary
policy shock based on the local projection as specified along with (4.2). The new monetary policy shock is identified as the
residual from the Taylor rule regression in (4.1) whereas the conventional monetary policy shock is based on the same regression
when bj = 0 for j > 1, as in Romer and Romer (2004). The shaded areas indicate 68% and 95% confidence bands for the new
shock, and the dotted lines indicate the 95% confidence band for the conventional shock using standard errors robust to serial
correlation and heteroskedasticity for all bands.

the response of consumption is highly similar across the new shock and the RR shock,
suggesting that investment, government spending, or net exports respond quite differently
to the two shocks. Business inventories initially increase, consistent with a surprise reduction
in demand, and then fall. The reduction in inventories is significantly more pronounced for
the new shock consistent with the more rapid decline in capacity utilization. Finally, the
yield spread between BAA- and AAA-rated corporate bonds responds more strongly and
significantly to the new shock. Overall, we find substantial differences in the response of
these outcomes, and the effects of the new shock tend to be stronger and more significant.

Aruoba and Drechsel (2022) shock. Section 3 provides evidence suggesting that the
shock constructed by Aruoba and Drechsel (2022) (AD shock henceforth) may be contam-
inated by systematic monetary policy. We next compare the impulse response estimates
between the AD shock and a new AD shock, which is the residual AD shock when regressing
on the right-hand side variables of (4.1). Figure 6 shows that the new AD shock leads to a
more short-lived response of the federal funds rate, a stronger decline of real GDP declines,
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Figure 6: Comparison of main responses with Aruoba and Drechsel (2022) shock

(a) FFR (b) Real GDP (c) Inflation

Notes: The figure shows responses of the federal funds rate, log real GDP and the inflation rate to a monetary policy shock
based on the local projection as specified along with (4.2). The new monetary policy shock is identified as the residual from
the Taylor rule regression in (4.1) where we put the Aruoba and Drechsel (2022) shock on the left-hand-side, whereas the
conventional monetary policy shock is taken directly from Aruoba and Drechsel (2022). The shaded areas indicate 68% and
95% confidence bands using standard errors robust to serial correlation and heteroskedasticity.

and a substantially shorter lag in the inflation response, when compared to the original
AD shock. The differences are sizeable and statistically significant at some horizons, see
Figure C.2 in Appendix C.

4.3 Sensitivity analysis

In this section, we provide a sensitivity analysis to assess the robustness of our baseline
results. We investigate how our results depend on varying sample periods, the inclusion of
additional control variables, and alternative measures of economic activity and prices. We
summarize our findings in the following, but delegate all figures to Appendix C.

Alternative sample periods. Our baseline shock measure is estimated on the full sample
of Greenbook forecasts from 1969 through 2007, but the impulse responses presented above
are estimated on the post-1983 sub-sample. We analyze whether our estimated responses
differ if the shock identification regressions (4.1) for both the RR shock and our new shock are
estimated on the same post-1983 sub-sample. Figure C.3 shows that the inflation response to
the RR shock features a similarly long lag as in the baseline. The GDP response to the RR
shock is insignificant but rather expansionary. In contrast, the response of inflation to our
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new shock remains similar to the baseline, while the GDP response remains contractionary
but is less significant than in the baseline. We further estimate impulse responses on the full
sample (1969-2007) instead of the post-1983 sample and report the results in Figure C.4.
Similar to the baseline, we find that the new shock delivers a significantly stronger contraction
in real GDP. Interestingly, the inflation response is similar across both shocks for around two
years and features a price puzzle.28 At longer horizons, however, the new shock leads to a
stronger inflation decline. The large difference between estimating the impulse responses on
the full-sample vis-à-vis the post-1983 may potentially arise because of the structural breaks
around the Great Inflation and subsequent disinflation, which our linear local projection
does not model.

Additional control variables. Romer and Romer (2004) and Coibion (2012) impose a
recursiveness assumption by including contemporaneous real GDP and inflation as control
variables. In effect, these variables cannot contemporaneously respond to the monetary
policy shock. Figure C.5 shows that our results are highly similar to the baseline imposing
the recursiveness assumption. Parts of the related literature control for lags of the log
S&P 500 and the Gilchrist and Zakrajšek (2012) excess bond premium (e.g., Jarociński and
Karadi, 2020). Figure C.6 shows that our estimated responses are similar to the baseline
when adding twelve lags of the two control variables. Finally, some of the related literature
controls for lags of the RR shocks (see, e.g., Ramey, 2016). Figure C.7 shows that our results
hardly change when adding twelve lags of the shock under consideration to the baseline set
of control variables.

Alternative outcome variables. Our baseline results use interpolated real GDP and
the GDP deflator to measure economic activity and prices at monthly frequency as similarly
done in Jarociński and Karadi (2020); Aruoba and Drechsel (2022). An alternative is to
use industrial production (IP) and CPI inflation, which are readily available at monthly
frequency (e.g. Gertler and Karadi, 2015; Bauer and Swanson, 2023b). Figure C.8 shows
the responses of IP and CPI. The differences between the new and the RR shock remain
similar to the baseline. However, the IP response is not very precisely estimated for the new
shock. If we further control for twelve lags of the Gilchrist and Zakrajšek (2012) excess bond
premium and the log S&P 500, the IP response is more precisely estimated, see Figure C.9.

28Including twelve lags of the log commodity price index (or its growth rate) resolves the price puzzle.
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5 Conclusion

This paper revisits conventional empirical strategies to estimate monetary policy shock series.
We show theoretically that fluctuations in systematic monetary policy lead to misidentified
shocks and bias in the estimated impulse responses. We provide empirical evidence to support
the theory. We find that Romer and Romer (2004) monetary policy shocks are predictable
by fluctuations in measured systematic monetary policy. We construct a new shock series
that is orthogonal to systematic monetary policy and assess its effects on the U.S. economy.
Our shock suggests monetary policy has shorter lags and stronger effects on inflation and
output relative to comparable evidence for the Romer and Romer (2004) shock.
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Appendix A Data

Table A.1: Descriptive statistics of the Hawk-Dove balances

Mean Median SD Autocorr Corr Min Max T

HawkF
τ 0.06 0.10 0.34 0.95 - -0.80 0.73 630

HawkR
τ 0.24 0.25 0.47 0.91 0.60 -0.75 1.00 630

Notes: This table shows descriptive statistics for the time series at FOMC meeting frequency from 1960 through
2023. HawkF

τ is the average Hawk-Dove balance of the FOMC. HawkR
τ is the FOMC rotation instrument.

"Autocorr" refers to the meeting-over-meeting autocorrelation. "Corr" refers to the correlation between both series.
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Appendix B Additional results for Section 3

Table B.1: Lasso estimation to explain RR shocks

(1) (2) (3) (4) (5)

∆HawkR
τ−1 × yτ−1,2 -0.195 -0.148 -0.138 -0.107 -0.082

(0.300) (0.368) (0.346) (0.301) (0.367)

∆HawkR
τ−1 × ∆πτ−1,−1 0.149 0.111 0.233 0.224

(0.137) (0.244) (0.047) (0.054)

∆HawkR
τ−1 × πτ−1,1 0.133 0.076 -0.226

(0.262) (0.338) (0.400)

∆HawkR
τ−1 × ∆πτ−1,1 0.222 0.273

(0.032) (0.026)

∆HawkR
τ−1 × πτ−1,2 0.325

(0.267)

Constant 0.007 0.002 0.003 0.007 0.006

(0.713) (0.917) (0.864) (0.678) (0.715)

T 350 350 350 350 350

R2 0.046 0.067 0.086 0.145 0.154

Notes: The table shows Lasso regression results based on (3.4). The Lasso shrinkage parameter is chosen to
increment the number of regressors from one to five, and the associated results are presented in columns one to
five, respectively. The time sample runs from 1969 through 2007, and standard errors robust to serial correlation
and heteroskedasticity are in parentheses.
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Appendix C Additional results for Section 4

Figure C.1: Response to new shock "minus" response to RR shock

(a) Capacity utiliziation (b) Unemployment rate (c) Consumption

(d) Inventories (e) Hours (f) Credit spread

Notes: The figure shows the differences across impulse responses for capacity utilization, the unemployment rate, log consump-
tion expenditures, log business inventories, log hours (in manufacturing), and credit spreads (BAA- minus AAA-rated corporate
bond yield) to a monetary policy shock based on the local projection as specified along with (4.2). The difference is computed
as the response to the new shock minus the response to the old shock for each outcome, respectively. The new monetary policy
shock is identified as the residual from the Taylor rule regression in (4.1) whereas the conventional monetary policy shock is
based on the same regression when bj = 0 for j > 1, as in Romer and Romer (2004). The shaded areas indicate 68% and 95%
confidence bands using standard errors robust to serial correlation and heteroskedasticity.

Figure C.2: Response to new shock “minus”response to Aruoba and Drechsel (2022) shock

(a) FFR (b) Real GDP (c) Inflation

Notes: The figure shows the differences across impulse responses for the federal funds rate, log real GDP and the inflation
rate to a monetary policy shock based on the local projection as specified along with (4.2). The difference is computed as the
response to the new shock minus the response to the old shock for each outcome, respectively. The new monetary policy shock
is identified as the residual from the Taylor rule regression in (4.1) where we put the Aruoba and Drechsel (2022) shock on the
left-hand-side, whereas the conventional monetary policy shock is taken directly from Aruoba and Drechsel (2022). The shaded
areas indicate 68% and 95% confidence bands using standard errors robust to serial correlation and heteroskedasticity.
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Figure C.3: Responses for identification sample 1983-2007

(a) FFR (new shock CI) (b) FFR (RR shock CI) (c) FFR (difference)

(a) Real GDP (new shock CI) (b) Real GDP (RR shock CI) (c) Real GDP (difference)

(a) Inflation (new shock CI) (b) Inflation (RR shock CI) (c) Inflation (difference)

Notes: The figure shows responses of the federal funds rate, log real GDP and the inflation rate to a monetary policy shock
based on the local projection as specified along with (4.2). The new monetary policy shock is identified as the residual from the
Taylor rule regression in (4.1) whereas the conventional monetary policy shock is based on the same regression when bj = 0
for j > 1, as in Romer and Romer (2004). The estimation sample for shock identification coincides with the impulse response
estimation sample, running from 1983 until 2007. Columns 1 and 2 display the response to the new shock and conventional
shock, respectively. Column 3 display the response to the new shock minus the response to the conventional shock. The shaded
areas indicate 68% and 95% confidence bands using standard errors robust to serial correlation and heteroskedasticity.
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Figure C.4: Responses for estimation sample 1969-2007

(a) FFR (new shock CI) (b) FFR (RR shock CI) (c) FFR (difference)

(a) Real GDP (new shock CI) (b) Real GDP (RR shock CI) (c) Real GDP (difference)

(a) Inflation (new shock CI) (b) Inflation (RR shock CI) (c) Inflation (difference)

Notes: The figure shows responses of the federal funds rate, log real GDP and the inflation rate to a monetary policy shock
based on the local projection as specified along with (4.2). The new monetary policy shock is identified as the residual from the
Taylor rule regression in (4.1) whereas the conventional monetary policy shock is based on the same regression when bj = 0 for
j > 1, as in Romer and Romer (2004). The results correspond to the full sample, running from 1969 until 2007. Columns 1 and
2 display the response to the new shock and conventional shock, respectively. Column 3 display the response to the new shock
minus the response to the conventional shock. The shaded areas indicate 68% and 95% confidence bands using standard errors
robust to serial correlation and heteroskedasticity.
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Figure C.5: Responses when imposing recursiveness assumption

(a) FFR (new shock CI) (b) FFR (RR shock CI) (c) FFR (difference)

(a) Real GDP (new shock CI) (b) Real GDP (RR shock CI) (c) Real GDP (difference)

(a) Inflation (new shock CI) (b) Inflation (RR shock CI) (c) Inflation (difference)

Notes: The figure shows responses of the federal funds rate, log real GDP and the inflation rate to a monetary policy shock based
on the local projection as specified along with (4.2). Additionally, we control for contemporaneous log real GDP and inflation
imposing the recursiveness assumption that monetary policy shocks affect these variables only with a one-month lag. The new
monetary policy shock is identified as the residual from the Taylor rule regression in (4.1) whereas the conventional monetary
policy shock is based on the same regression when bj = 0 for j > 1, as in Romer and Romer (2004). Columns 1 and 2 display
the response to the new shock and conventional shock, respectively. Column 3 display the response to the new shock minus the
response to the conventional shock. The shaded areas indicate 68% and 95% confidence bands using standard errors robust to
serial correlation and heteroskedasticity.
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Figure C.6: Responses when controlling for S&P 500 and EBP

(a) FFR (new shock CI) (b) FFR (RR shock CI) (c) FFR (difference)

(a) Real GDP (new shock CI) (b) Real GDP (RR shock CI) (c) Real GDP (difference)

(a) Inflation (new shock CI) (b) Inflation (RR shock CI) (c) Inflation (difference)

Notes: The figure shows responses of the federal funds rate, log real GDP and the inflation rate to a monetary policy shock
based on the local projection as specified along with (4.2). Additionally, we control for 12 lags of both the S&P 500 and the
excess bond premium from Gilchrist and Zakrajšek (2012). The new monetary policy shock is identified as the residual from
the Taylor rule regression in (4.1) whereas the conventional monetary policy shock is based on the same regression when bj = 0
for j > 1, as in Romer and Romer (2004). Columns 1 and 2 display the response to the new shock and conventional shock,
respectively. Column 3 display the response to the new shock minus the response to the conventional shock. The shaded areas
indicate 68% and 95% confidence bands using standard errors robust to serial correlation and heteroskedasticity.
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Figure C.7: Responses when controlling for lagged shocks

(a) FFR (new shock CI) (b) FFR (RR shock CI) (c) FFR (difference)

(a) Real GDP (new shock CI) (b) Real GDP (RR shock CI) (c) Real GDP (difference)

(a) Inflation (new shock CI) (b) Inflation (RR shock CI) (c) Inflation (difference)

Notes: The figure shows responses of the federal funds rate, log real GDP and the inflation rate to a monetary policy shock
based on the local projection as specified along with (4.2). Additionally, we control for 12 lags of monetary policy shock under
consideration. The new monetary policy shock is identified as the residual from the Taylor rule regression in (4.1) whereas
the conventional monetary policy shock is based on the same regression when bj = 0 for j > 1, as in Romer and Romer
(2004). Columns 1 and 2 display the response to the new shock and conventional shock, respectively. Column 3 display the
response to the new shock minus the response to the conventional shock. The shaded areas indicate 68% and 95% confidence
bands using standard errors robust to serial correlation and heteroskedasticity.
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Figure C.8: Responses of IP and CPI

(a) FFR (new shock CI) (b) FFR (RR shock CI) (c) FFR (difference)

(a) IP (new shock CI) (b) IP (RR shock CI) (c) IP (difference)

(a) CPI inflation (new shock CI) (b) CPI inflation (RR shock CI) (c) CPI inflation (difference)

Notes: The figure shows responses of the federal funds rate, log industrial product and the CPI inflation rate to a monetary
policy shock based on the local projection as specified along with (4.2). We control for 12 lags of both, the log of industrial
production and CPI inflation instead of real GDP and inflation based on the GDP deflator. The new monetary policy shock
is identified as the residual from the Taylor rule regression in (4.1) whereas the conventional monetary policy shock is based
on the same regression when bj = 0 for j > 1, as in Romer and Romer (2004). Columns 1 and 2 display the response to the
new shock and conventional shock, respectively. Column 3 display the response to the new shock minus the response to the
conventional shock. The shaded areas indicate 68% and 95% confidence bands using standard errors robust to serial correlation
and heteroskedasticity.
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Figure C.9: Responses of IP and CPI when controlling for S&P 500 and EBP

(a) FFR (new shock CI) (b) FFR (RR shock CI) (c) FFR (difference)

(a) IP (new shock CI) (b) IP (RR shock CI) (c) IP (difference)

(a) CPI inflation (new shock CI) (b) CPI inflation (RR shock CI) (c) Difference: CPI inflation

Notes: The figure shows responses of the federal funds rate, log industrial product and the CPI inflation rate to a monetary
policy shock based on the local projection as specified along with (4.2). We control for 12 lags of both, the log of industrial
production and CPI inflation instead of real GDP and inflation based on the GDP deflator. Additionally, we control for 12
lags of both the S&P 500 and the excess bond premium from Gilchrist and Zakrajšek (2012). The new monetary policy shock
is identified as the residual from the Taylor rule regression in (4.1) whereas the conventional monetary policy shock is based
on the same regression when bj = 0 for j > 1, as in Romer and Romer (2004). Columns 1 and 2 display the response to the
new shock and conventional shock, respectively. Column 3 display the response to the new shock minus the response to the
conventional shock. The shaded areas indicate 68% and 95% confidence bands using standard errors robust to serial correlation
and heteroskedasticity.

40


	Introduction
	Identification challenge in theory
	Time-varying systematic monetary policy
	Conventional identification of monetary policy shocks
	Impulse response estimate
	A non-linear New Keynesian model

	Empirical evidence on the systematic origins of monetary policy shocks 
	RR monetary policy shocks
	Measuring time-varying systematic monetary policy
	Predictability of RR shocks

	A new monetary policy shock 
	Shock identification
	Impulse responses
	Sensitivity analysis

	Conclusion
	Data
	Additional results for Section 3
	Additional results for Section 4

