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1. INTRODUCTION

An increasingly popular practice in empirical macroeconomics is to set-identify the pa-
rameters of a structural vector autoregression [SVAR] by means of exclusion and/or sign
restrictions. Most studies working with this type of models have relied on Bayesian methods
to construct posterior credible sets for the structural parameters of interest (for example,
Inoue and Kilian (2013), Arias, Rubio-Ramirez, and Waggoner (2017), and Baumeister and
Hamilton (2015)).
A practical concern with Bayesian analysis in set-identified SVARs is that posterior in-

ference continues to be influenced by prior beliefs even if the sample size is infinite (Poirier
(1998), Gustafson (2009), Moon and Schorfheide (2012)). This observation has motivated
the study of alternative approaches to inference that dispense with the specification of a
prior distribution over structural parameters that are only set-identified.
There are two existing proposals that characterize the estimation uncertainty of set-

identified structural responses, without postulating a specific prior for the parameters of
the structural model. On the one hand, Granziera, Moon, and Schorfheide (2017) [GMS17]
have proposed a frequentist confidence interval for structural impulse-response coefficients
based on a moment-inequality-minimum-distance framework. On the other hand, Giacomini
and Kitagawa (2015) [GK15] have proposed a robust Bayes credible interval that achieves a
given credibility level regardless of the prior specified over the model’s set-identified struc-
tural parameters.
We contribute to the analysis of set-identified SVARs by proposing a novel delta-method

interval for the coefficients of the impulse-response function [IRF]. We show that our delta-
method interval is point-wise consistent in level and, under certain regularity conditions,
has asymptotic robust Bayesian credibility of at least the nominal level. Thus, our inference
approach can be interpreted both from a frequentist and a robust Bayes perspective. We
also argue that the computational cost of our procedure compares favorably with GMS17
and GK15.
Broadly speaking, our approach is based on a closed-form characterization of the endpoints

of the identified set and their directional derivatives. Our delta-method interval— which may
be viewed as a generalization of the pioneering work of Lütkepohl (1990) on delta-method
inference for point-identified VARs—takes the form of a plug-in estimator for the identified
set plus/minus standard errors.
The main limitation of our approach is that the delta-method interval is only defined

for SVAR models that impose equality and inequality restrictions on a single structural
shock (e.g., a monetary policy shock). Admittedly, this is problematic, as some popular
applications of set-identified SVARs feature restrictions on multiple structural innovations.1

1SVAR applications for the oil market set-identify both demand and supply shocks using sign restrictions
and elasticity bounds [Kilian and Murphy (2012)]. The same is true for recent labor market applications
[Baumeister and Hamilton (2015)]. Also Mountford and Uhlig (2009)—one of the most cited applications of
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In spite of this observation, single-shock set-identified models have been applied in several
empirical studies: for example, to study the effects of monetary policy on output [Uhlig
(2005)], the impact of monetary policy on the housing market [Vargas-Silva (2008)], the
effects of labor market shocks on worker flows [Fujita (2011)], the effects of exchange rates
on aggregate prices [An and Wang (2012)], and the effect of optimism shocks on business
cycles fluctuations [Beaudry, Nam, and Wang (2011)]. Thus, we think there is room for our
results to have an impact on empirical work.
To illustrate the usefulness of our main results, we estimate a monetary structural vector

autoregression using monthly U.S. data from July 1979 to December 2007 (a sample that
deliberately ends a half-year before the financial crisis begins). The goal of our exercise is to
use pre-crisis data to learn about the responses of macroeconomic variables to shocks that
have effects similar to the ‘unconventional’ monetary policy interventions implemented after
the crisis.
We set-identify an unconventional monetary policy [UMP] shock as an innovation that

decreases the two-year government bond rate upon impact, but has no effect over the nominal
federal funds rate.2 We consider two additional sign restrictions on the contemporaneous
responses of inflation and output. Namely, we assume that—upon impact—neither inflation
nor output can respond negatively to a UMP shock. Since the model is only set-identified,
our analysis effectively captures the effects of any historical economic shock that affected
the economy in the same way as an UMP shock.
We apply our delta-method approach to construct a confidence interval for the dynamic

responses of industrial production, inflation, the two-year government bond rate, and the
nominal federal funds rate. We use our delta-method intervals to assess the effects of the
announcement of the second part of the so-called Quantitative Easing program (QE2) in
August 2010. Pre-crisis data turns out to be extremely useful to learn about the post-crisis
response of macroeconomic aggregates to unconventional monetary policy.
The remainder of the paper is organized as follows. Section 2 presents an overview of the

main methodological results in this paper. Section 3 introduces our empirical application,
which is used as a running example throughout the paper. Section 4.1 presents our algorithm
to evaluate the endpoints of the identified set. Section 4.2 establishes the differentiability
properties of the endpoints. Section 4.3 presents our delta-method approach and establishes
its asymptotic frequentist validity as well as its asymptotic robust Bayesian credibility.
Section 5 presents the delta-method intervals for the dynamic responses to the QE2 program.
Section 6 concludes. All of our proofs are collected in Appendix A. Additional figures and
implementation details of different procedures are collected in Appendix B.

set-identified SVARs—use sign restrictions to identify a government revenue shock as well as a government
spending shock, while controlling for a generic business cycle shock and a monetary policy shock.

2The paper focuses on the two-year rate as this variable changed considerably after the announcement of
the second round of the Quantitative Easing program. See Krishnamurthy and Vissing-Jorgensen (2011)
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Generic Notation: If A is a matrix, Aij denotes the ij-th element of A, vec(A) de-
notes the vectorization of A, and vech(A) denotes half-vectorization (applicable only if A is
symmetric). The Kronecker product between matrices A and B is denoted by A ⊗ B. The
vector emi ∈ Rm denotes the i-th column of the identity matrix—denoted Im—of dimension
m. If B is a matrix of dimension n× n, Bi ≡ Beni denotes its i-th column. If the dimension
of eni is obvious, we ignore the superscript n.

2. MODEL, SET-IDENTIFYING RESTRICTIONS, AND OVERVIEW OF MAIN
THEORETICAL RESULTS

This section presents the baseline SVAR model, discusses the class of set-identifying re-
strictions that we consider, and provides an overview of our main methodological results.

2.1. SVAR model and impulse-response coefficients

We study the n-dimensional structural vector autoregression (SVAR) with p lags; i.i.d.
structural shocks distributed according to F ; and unknown n× n structural matrix B:

(2.1) Yt = A1Yt−1 + . . .+ApYt−p +Bεt, EF [εt] = 0n×1, EF [εtε′t] ≡ In.

The object of interest is the k-th period ahead structural impulse response function of
variable i to a particular shock j (e.g., a monetary policy shock):

(2.2) λk,i,j(A,B) ≡ e′iCk(A)Bj ,

where Bj ≡ Bej and ei and ej denote the i-th and j-th column of In.3 We refer to the
parameter in (2.2) as the (k, i, j)-coefficient of the structural impulse-response function.
An auxiliary object in the estimation of (2.2) is the vector of reduced-form VAR parame-

ters:

(2.3) µ ≡ (vec(A)′, vec(Σ)′)′ ∈M ⊆ Rd, A ≡ (A1, A2, . . . , Ap), Σ ≡ BB′.

The reduced-form parameter space is denoted asM. The parameter A denotes the autore-
gressive coefficients of the VAR model, while Σ denotes the covariance matrix of residuals.
These parameters can be estimated directly from the data by multivariate Least-Squares
(LS). Our main high-level assumption will be the approximate normality of the distribution

3The transformation Ck(A) that appears in equation (2.2) is defined recursively by the formula C0 ≡ In:

Ck(A) ≡
k∑

m=1

Ck−m(A)Am, k ∈ N,

Am = 0 if m > p; see Lütkepohl (1990), p. 116.



DELTA-METHOD INFERENCE 5

of the LS estimator of µ. This condition will be satisfied even in the presence of unit roots
and possible cointegration of unknown form (see Sims, Stock, and Watson (1990), Toda and
Yamamoto (1995), Dolado and Lütkepohl (1996), Inoue and Kilian (2002), and Proposi-
tion 7.1 in Lütkepohl (2007)). Our main assumption is less demanding than the asymptotic
normality of the reduced-form impulse-responses in GMS17 (see Kilian (1998), Benkwitz,
Neumann, and Lütekpohl (2000)).4

2.2. Set-Identifying Restrictions

A common practice in empirical macroeconomics is to use equality and inequality restric-
tions to set-identify the structural IRFs in (2.2). An example of an equality restriction in a
monetary VAR is that prices do not react contemporaneously to monetary policy shocks. An
example of an inequality restriction is that a contractionary monetary policy shock cannot
increase prices.

Let R(µ) ⊆ Rn be the set of values of Bj that satisfy the inequality and equality restric-
tions. In our paper, the set R(µ) takes the form

(2.4) R(µ) ≡
{
Bj ∈ Rn

∣∣∣ Z(µ)′Bj = 0mz×1 and S(µ)′Bj ≥ 0ms×1

}
,

where Z(µ) is a matrix of dimension n×mz and S(µ) is a matrix of dimension n×ms. The
matrix Z(µ) collects the equality restrictions specified by the researcher (we assume there
are mz of them). The matrix S(µ) collects the inequality restrictions (we assume there are
ms of them).

The simple formulation in (2.4) allows the researcher to incorporate the following identi-
fying restrictions:

a) Sign restrictions on the responses of variable i at horizon k to an impulse on the j-th
shock:

e′iCk(A)Bj ≥ or = 0,

as in Uhlig (2005).
b) Long-run restrictions on the response of variable i to an impulse on the j-th shock:

e′i(In −A1 − . . .−Ap)−1Bj ≥ or = 0,

as in Blanchard and Quah (1989).
c) Short-run restrictions on the coefficients of the j-th structural equation. For example,

4We would like to thank an anonymous referee for suggesting this clarification.



6 GAFAROV, MEIER, AND MONTIEL-OLEA

the contemporaneous coefficient of the i-th variable in the j-th structural equation:

e′i(B′)−1ej = e′iΣ−1Bj ≥ or = 0,

as in Rubio-Ramirez, Caldara, and Arias (2015).
d) Elasticity bounds as in Kilian and Murphy (2012); for example, for some b ∈ R :

e′iBj/e
′
i′Bj ≥ b ⇐⇒ (ei − bei′)′Bj ≥ 0,

provided e′i′Bj > 0.

Sign-Normalization: In order to make sure that the impulse response of interest is with
respect to a fixed-sign shock one should always impose a sign-normalization. Our framework
allows at least two different ways of imposing such a normalization: i) restricting the sign
of the direct effect of the j-th variable on the j-th equation, or ii) restricting the sign of an
arbitrary IRF coefficient. The first type of sign normalization is covered in c) as the short-
run restriction e′jB−1ej ≥ 0, while the second is covered in a) as a typical sign restriction
on the IRFs.

2.3. Overview of the main results

The main results in this paper concern the ‘endpoints’ of the identified set for a given
structural impulse-response coefficient, λk,i,j . These endpoints (which we sometimes refer
to as the maximum and minimum response) are defined as follows:

Definition 1: Given a vector of reduced-form parameters µ we define the endpoints of
the identified set for λk,i,j as the functions:

(2.5) vk,i,j(µ) ≡ sup
B∈Rn×n

e′iCk(A)Bej , s.t. BB′ = Σ and Bej ∈ R(µ),

and

(2.6) vk,i,j(µ) ≡ inf
B∈Rn×n

e′iCk(A)Bej , s.t. BB′ = Σ and Bej ∈ R(µ).

The functions vk,i,j(µ), vk,i,j(µ) correspond to the largest and smallest value of the struc-
tural parameter over its identified set.

Our delta-method approach is supported by the three results described in the abstract,
which can be summarized as follows:
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• Theorem 1 (Algorithm to evaluate the maximum and minimum response): We present
an algorithm that allows a researcher to evaluate the endpoints of the identified set given
a vector of reduced-form parameters. The algorithm—inspired by the earlier work of Faust
(1998)—evaluates all different collections of ‘active’ constraints and selects those that gen-
erate the largest (or smallest) value function—after checking that the inequality constraints
not included in the set of active constraints are satisfied.5

Our algorithm does not require sampling from the space of structural matrices B. Instead,
we show that vk,i,j(µ) and vk,i,j(µ) are the value functions of a mathematical program whose
Karush-Kuhn-Tucker points can be described analytically—up to a set of active inequality
constraints. More concretely, Lemma 1 shows that the maximum response for λk,i,j is equal
to either plus or minus the function

vk,i,j(µ; r) ≡
(
e′iCk(A)Σ1/2MΣ1/2rΣ1/2Ck(A)′ei

)1/2
,

where
MΣ1/2r ≡ In − Σ1/2r(r′Σr)−1r′Σ1/2,

and r is a matrix collecting the gradient vectors of the constraints in R(µ) that are active
at a maximum. Evaluating the function above for different values of r and checking the fea-
sibility of the corresponding solution yields the maximum response. The minimum response
is obtained analogously.
• Theorem 2 (Directional Differentiability of the endpoints): We show that the functions
vk,i,j(·) and vk,i,j(·) are directionally differentiable. More precisely, let X∗(µ) denote the set
of maximizers of program (2.5). Consider a sequence of ‘perturbations’ of µ each of them
in a ‘direction’ hN ∈ Rd. We show that for any sequence hN ∈ Rd such that hN → h ∈ Rd,
and any sequence tN →∞:

tN

(
vk,i,j(µ+ hN/tN )− vk,i,j(µ)

)
→ max

x∈X∗(µ)

[
v̇k,i,j(µ; r(µ;x))′h

]
,

where r(µ;x) collects the gradient of the constraints that are active at a point x and
v̇k,i,j(·; r)′ is a gradient of vk,i,j(·; r). The proof of the result above builds on Lemma 2
which establishes the differentiability of the function vk,i,j for a fixed set of active con-
straints. We relate the expression of the directional derivative with the generalized versions
of the envelope theorems in the work of Fiacco and Ishizuka (1990) and Bonnans and Shapiro
(2000). We argue that directional differentiability of the value functions (as opposed to full
differentiability) arises due to the possibility that different structural models lead to the
maximum (or minimum) response.

5Given a point x, we refer to any collection of binding restrictions defining R(µ) as active constraints at
x. The term ‘active constraints’ or ‘active set of constraints’ is the common terminology used in numerical
optimization; see p. 308 in Nocedal and Wright (2006).



8 GAFAROV, MEIER, AND MONTIEL-OLEA

• Theorem 3 (Large-sample properties): We establish the point-wise consistency in level
and the asymptotic robust Bayes credibility of our delta-method interval. Our suggested
interval takes the form

CST (1− α;λk,i,j) ≡
[
vk,i,j(µ̂T )− z1−α/2 σ̂(k,i,j),T /

√
T , vk,i,j(µ̂T ) + z1−α/2 σ̂(k,i,j),T /

√
T
]
,

where µ̂T is the typical LS estimator for the VAR reduced-form parameters, z1−α/2 is the
(1−α/2) quantile of a standard normal, and σ̂(k,i,j),T is our formula for the standard errors
based on the directional derivatives.

3. RUNNING EXAMPLE: UNCONVENTIONAL MONETARY POLICY SHOCKS

This section introduces our empirical application, which will be used as a running example
to illustrate our assumptions and results.
We consider a simple 4-variable model that includes the Consumer Price Index (CPIt),

the Industrial Production Index (IPt), the 2-year Treasury Bond rate (2yTBt), and the
Federal Funds rate (FFt).6 We take a logarithmic transformation of CPIt, IPt and then
work with first differences for all variables. Thus, our vector of macro variables is:

Yt ≡
(

lnCPIt − lnCPIt−1, ln IPt − ln IPt−1, 2yTBt − 2yTBt−1, FFt − FFt−1

)′
.

We set the number of lags equal to p = 12 following Gertler and Karadi (2015). The
time span of the monthly series is July 1979 to August 2008 (T = 342). To keep our
exposition as simple as possible, we ignore potential co-integration issues between short-
term and long-term interest rates. Without loss of generality, we assume that the column of
B corresponding to an UMP shock is the first column; B1 ≡ Be1. Our equality/inequality
restrictions are summarized in Table I. These sign restrictions can be justified by the DSGE
model calibrated in the work of Bhattarai, Eggertsson, and Gafarov (2015).

TABLE I
Set-Identification of an Unconventional Monetary Policy Shock: Restrictions

Series Acronym UMP Notation
Consumer Price Index CPI + e′1B1 ≥ 0
Industrial Production IP + e′2B1 ≥ 0
2-year Treasury Bond rate 2yTB − e′3B1 ≤ 0
Fed Funds Rate FF 0 e′4B1 = 0

Description: Restrictions on contemporaneous responses to a UMP shock. ‘0’ stands for a zero
restriction, ‘−’ stands for a negative sign restriction and ‘+’ for positive sign restriction.

6All these variables are sourced from the data set of Gertler and Karadi (2015). We thank Peter Karadi
for making their data set available to us.
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Baumeister and Benati (2013) study a related identification scheme. They consider a
Bayesian SVAR to study an analogous ‘spread’ monetary policy shock that leaves the short-
term nominal rate unchanged, but affects the spread between the ten-year Treasury-bond
yield and the policy rate.

Outline for the rest of our paper: We have already presented an overview of our
main results and described our running example. In the remaining part of the paper, we
formalize Theorems 1, 2, 3 and use them to conduct inference about the responses to an
unconventional monetary policy shock.

4. THEOREMS

4.1. Theorem 1

In this section we consider the problem of finding the maximum response to an impulse
in the j-th structural shock subject to mz equality (‘zero’) restrictions and ms inequality
(‘sign’) restrictions. The focus on the maximum and the minimum is an intermediate step
to conduct inference about the coefficients of the impulse-response function.

4.1.1. Assumptions

We make two assumptions on the sign and zero restrictions allowed in the model:

Assumption 1 The choice set in program (2.5) is not empty at µ.

This assumption simply requires that the identifying restrictions do not contradict each
other.

Now, let ems1 , ems2 , . . . emsms denote the ms different columns of the identity matrix Ims . Let
e(k) denote an ms × k matrix formed by collecting any of the k ≤ ms columns of Ims .

Definition 2: We say that Z(µ) and S(µ) are linearly independent at µ if
for any k ∈ Z, 0 ≤ k ≤ ms and any e(k) the matrix

R(µ; e(k)) ≡ [Z(µ), S(µ)e(k)] ∈ Rn×(mz+k)

has full rank.

Assumption 2 Z(µ) and S(µ) are linearly independent at µ.

This assumption has two important implications. The first implication is that at most
n − 1 constraints can be active at a solution of program (2.5) (in particular, it implies
mz ≤ n − 1). The second implication is that it will allow us to characterize the maximum
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and minimum response in terms of Karush-Kuhn-Tucker conditions. We verify (and discuss)
this assumption for the UMP example in Section 4.1.3.

4.1.2. Algorithm

We now show that the value function vk,i,j(µ) in (2.5) can be obtained by applying a
simple algorithm. Let r be the matrix that collects all the columns of Z(µ) and whatever
columns of S(µ) that are active at a solution of program (2.5). Our first observation is that
the value function vk,i,j(µ) equals plus or minus

vk,i,j(µ; r) =
(
e′iCk(A)Σ1/2MΣ1/2rΣ1/2Ck(A)′ei

)1/2
,

and the corresponding maximizer equals either

x∗+(µ; r) ≡ Σ1/2
(
MΣ1/2r

)
Σ1/2Ck(A)′ei

/
vk,i,j(µ; r)

or
x∗−(µ; r) ≡ −Σ1/2

(
MΣ1/2r

)
Σ1/2Ck(A)′ei

/
vk,i,j(µ; r),

where MΣ1/2r ≡ In − Σ1/2r(r′Σr)−1r′Σ1/2.
This result is shown formally in Lemma 1 in Appendix A.1 (where we also provide in-

tuition). The lemma implies that if we knew the program’s binding constraints, the value
function could be computed directly—up to its sign—as vk,i,j(µ, r). Moreover, the sign of
value function is positive if x∗+(µ; r) satisfies the inequality restrictions that are not included
in r, and negative otherwise.

Let R denote the set of all possible matrices r that could arise from collecting all of the
mz columns of the matrix Z(µ) and k out of the ms columns of the matrix S(µ), where
0 ≤ k ≤ n−mz − 1. Take any c larger than

c̄ ≡ max
i,k

(
e′iCk(A)ΣCk(A)′ei

)1/2
.

The parameter c will be used to ‘penalize’ candidate solutions that do not satisfy the in-
equality restrictions in S(µ).7 The penalization works as follows. Consider first the case in
which vk,i,j(µ; r) 6= 0. Since x∗+(µ; r) and x∗−(µ; r) above are well defined, we can verify if
these candidate solutions satisfy the sign restrictions that were not included in r (that is, we
verify the primal feasibility of the solutions). If the primal feasibility condition is satisfied
we store the candidate values; else we penalize them to guarantee that they are never a

7 The constant c̄ is the maximum value of the following programs:

(4.1) c̄ ≡ max
i,k

sup
B∈Rn×n

e′iCk(A)Bej , s.t. BB′ = Σ.
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solution. More concisely, we define the auxiliary functions:

f+
max(µ; r) ≡ vk,i,j(µ; r)− 2(1− 1ms(x∗+(µ; r)))c,

f−max(µ; r) ≡ −vk,i,j(µ; r)− 2(1− 1ms(x∗−(µ; r)))c,

where 1ms(x) ≡ 1{S(µ)′x ≥ 0ms×1} is 1 if and only if x satisfies all the inequality restrictions
in S(µ). The functions f+

max, f
−
max allow us to keep track of the candidate values (and their

feasibility) for each combination of active restrictions.
Consider now the penalization in the case in which vk,i,j(µ; r) = 0. This case is slightly

different from the one considered in the previous paragraph, as the candidate solutions (x∗+
and x∗−) are not always defined in this case. If there is a point x∗ 6= 0 satisfying the equality
restrictions in r and also the inequality restrictions that are not included in r, we set

f+
max(µ; r) = f−max(µ; r) = 0.

If no such point x∗ 6= 0 exists, vk,i,j(µ, r) = 0 cannot be a solution and we set

f+
max(µ; r) = f−max(µ; r) = −2c.

The following theorem shows that we can compute the value function of the mathematical
program (2.5) by selecting the maximum value of max{f+

max(µ; r), f−max(µ; r)} over r ∈
R. That is, we can solve for vk,i,j(µ) by considering the different combinations of active
restrictions and select the maximum value ±vk,i,j(µ, r) over them.

Theorem 1 Suppose that Assumptions 1 and 2 hold, then:

vk,i,j(µ) = max
r∈R

(
max{f+

max(µ; r), f−max(µ; r)}
)
.

The minimum value is obtained analogously.

Proof: The intuition behind the proof is as follows. Note that value achieved by any
combination of active sign restrictions r for which x∗+(µ; r) or x∗−(µ; r) is well-defined and
feasible must be, by definition, no larger than vk,i,j(µ). Thus, we only have to show that

max
r∈R

(
max{f+

max(µ; r), f−max(µ; r)}
)
≥ vk,i,j(µ).

Since Lemma 1 showed that the value of the program (2.5) should be of the form f+
max(µ; r)

or f−max(µ; r) for some r ∈ R, the result must follow. The proof is formalized in Appendix A.2.
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4.1.3. Using the algorithm in the UMP example

We verify Assumptions 1 and 2 at the estimated LS values of µ, denoted µ̂T . The simplest
way to verify Assumption 1 is to consider the different candidate solutions for the different
combinations of active constraints and check whether one of these solutions is feasible. For
Assumption 2, note that regardless of the number of k columns selected from S the resulting
matrix R(µ, e(k)) will always have full column rank. Thus, Assumption 2 is also verified.8

We now use our algorithm to evaluate the identified set and report vk,i,j(µ̂T ) and vk,i,j(µ̂T )
for the cumulative IRFs.9 The bounds in Figure 1 correspond to a one standard deviation
structural UMP shock.
We consider first the equality/inequality restrictions in Table I. Evaluating the endpoints

of the identified set for the 4 variables in the VAR, over 36 horizons, takes around 0.1 sec-
onds. We then include an additional inequality restriction on the response of output to an
expansionary UMP shock. Namely, we assume that even one period after the shock, the
cumulative effect on IP cannot be negative (e′2(C0 + C1(A))B1 ≥ 0). Figure 1 shows that
the upper bounds of the identified sets under the two identification schemes almost over-
lap. The figure suggests that the noncontemporaneous constraint has thus little additional
identification power.
There are at least two other ways of evaluating the maximum and minimum response

(although only our algorithm is guaranteed to provide a global solution in a finite number of
steps). One approach is to simply use a numerical solver (such as Matlab’s fmincon) to get
the value of the non-linear, non-convex program in (2.5). The result in Theorem 1 allows us to
avoid the specification of the standard tuning parameters for numerical optimization routines
(such as initial conditions, algorithms for the solver, tolerance levels for the solutions, and
number of iterations).
Another approach is to rely on a version of the Bayesian algorithm in Uhlig (2005). Given

reduced-form parameters µ and D draws of a unit vector q ∈ Rn, one could report the
maximum and minimum value over {λk,i,j(µ, qd)}Dd=1. Note that such algorithm is essen-
tially a random grid search approach to solve the program (2.5). The grid search approach
underestimates the identified set. In our application the bias is negligible for D = 10, 000
draws (the algorithm, however, takes around 300 seconds to run).

8Verifying Assumption 2 with more general restrictions requires additional work. For example, suppose
that the researcher is interested in including the restriction:

e′2C1(A)B1 ≥ 0.

This restriction says that the UMP shock cannot decrease the growth rate in Industrial Production even
one-period after the shock. Since C1(A) = A1, the vector e′2C1(A) is equal to the second row of A1, which
we can denote as (A1,(2,1), A1,(2,2), A1,(2,3), A1,(2,4)). Assumption 2 will be satisfied as long as µ is such that
A1,(2,j) 6= 0 for all j = 1, . . . 4, which means that each of the entries in the first lag of Yt−1 has predictive
power on Yt after controlling for the rest of the lags.

9The formula for the maximum (minimum) k-th period ahead cumulative IRF replaces Ck(ÂT ) by
C0(ÂT ) + C1(ÂT )+, . . . ,+Ck(ÂT ).
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4.2. Theorem 2

In this section we show that the endpoints of the identified set—vk,i,j(·) and vk,i,j(·)—are
directionally differentiable functions of the reduced-form parameter µ. This result is the
basis of our delta-method approach to conduct inference in set-identified SVARs.

4.2.1. Assumptions

In order to establish our differentiability result we need an additional regularity condition.
Our key assumption is as follows:

Assumption 3 The matrices Z(·) and S(·) are differentiable at µ.

We are not aware of equality/inequality restrictions in the SVAR literature that do not
satisfy this property. In particular, all the examples given in Subsection 2.2 of this paper
satisfy Assumption 3 for every value of µ ∈M.

4.2.2. Directional Differentiability

We will continue working with the auxiliary function vk,i,j(µ; r(µ)), where we now ex-
plicitly acknowledge the possible dependence of r on µ. Lemma 2 in Appendix A.3 shows
that if Assumptions 1-3 hold and vk,i,j(µ; r(µ)) 6= 0, then the function vk,i,j(µ; r(µ)) is
differentiable with respect to (vec(A)′, vec(Σ)′)′ with the derivative v̇k,i,j(µ; r(µ)) given by:


∂vk,i,j(µ;r(µ))

∂vec(A)

∂vk,i,j(µ;r(µ))
∂vec(Σ)

 =


∂vec(Ck(A))
∂vec(A) (x∗(µ; r(µ))⊗ ei)−

∑l
k=1 w

∗
k
∂vec(rk(µ))
∂vec(A) x∗(µ; r(µ))

λ∗Σ−1x∗(µ; r(µ))⊗ Σ−1x∗(µ; r(µ))−
∑l
k=1 w

∗
k
∂vec(rk(µ))
∂vec(Σ) x∗(µ; r(µ))

 ,
where rk(µ) denotes the k-th column of r(µ),

x∗(µ; r(µ)) = Σ1/2
(
MΣ1/2r(µ)

)
Σ1/2Ck(A)′ei

/
vk,i,j(µ; r(µ)),

λ∗ ≡ 1
2vk,i,j(µ; r(µ)), w∗ ≡ [r(µ)′Σr(µ)]−1r(µ)′ΣCk(A)ei,

and w∗k is the k-th component of the vector w∗.10

10The envelope theorem sheds light on the derivative formula provided in Lemma 2. Note first that, by
definition,

vk,i,j(µ; r(µ)) = max
x∈Rn

e′iCk(A)x s.t. x′Σ−1x = 1 and r′(µ)x = 0l×1.

The auxiliary Lagrangian function of this problem is given by

L(x;µ, r(µ)) = (x′ ⊗ e′i)vec(Ck(A))− λ
(

(x′ ⊗ x′)vec(Σ−1)− 1
)
− w′(r(µ)′x),

where λ is the Lagrange multiplier corresponding to the quadratic equality restriction and w ∈ Rl is the
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We now state the definition of directional differentiability and present our second Theo-
rem.

Definition 3: We say that the real-valued function v with domainM⊆ Rd is direction-
ally differentiable at µ if for any h ∈ Rd, any sequence tN →∞, and any sequence hN ∈ Rd

such that hN → h (µ + tNhN ∈ M) , there exists a continuous function v̇µ : Rd → R such
that:

tN

(
v(µ+ hN/tN )− vk,i,j(µ)

)
→ v̇µ(h).

We refer to the function v̇µ as the directional derivative of v(·) at µ.11

Let X∗(µ) denote the argmax of program (2.5). For x ∈ X∗(µ) let r(µ;x) denote the
matrix that collects all elements of Z(µ) and S(µ) that are active at x.

Theorem 2 Suppose that Assumptions 1-3 hold. Suppose in addition vk,i,j(µ) > 0. Then
vk,i,j is a directionally differentiable function of the reduced-form parameter µ with the
directional derivative given by

(4.2) max
x∈X∗(µ)

[
v̇k,i,j(µ; r(µ;x))′h

]
.

Whenever X∗(µ) = {x∗} is a singleton, the value function vk,i,j(µ) is fully differentiable
with the derivative v̇k,i,j(µ; r(µ;x∗)).12

Proof: See Appendix A.4.

Theorem 4.2, p. 223 in Fiacco and Ishizuka (1990) and Theorem 4.24, p. 280 in the book
of Bonnans and Shapiro (2000) present a generalized version of the envelope theorem. They
show that—under suitable constraint qualifications—the directional derivative (in direction
h and evaluated at parameter µ) of the largest and smallest value in a mathematical program
with equality and inequality constraints is given by

sup
x∈X∗(µ)

[
∇µL(x;µ)h

]
,

vector of Lagrange multipliers corresponding to the l equality restrictions. The envelope theorem suggests
that v̇k,i,j(µ; r(µ)) is given by the formula in Lemma 2. This intuition is confirmed in the proof of Lemma
2 provided vk,i,j(µ; r(µ)) 6= 0.

11See p.172 in Shapiro (1991).
12If vk,i,j(µ) < 0 the directional derivative simply becomes

max
x∈X∗(µ)

[
− v̇k,i,j(µ; r(µ;x))′h

]
,
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and
inf

x∈X∗(µ)

[
∇µL(x;µ)h

]
,

provided there is a unique set of Lagrange Multipliers supporting the optimal solutions.
Theorem 2 uses the results in Lemma 1 and Lemma 2 to verify this formula.

Delta-Method vs. Bootstrap: We also note that directionally differentiable func-
tions have been a topic of recent research. Fang and Santos (2015) show that the standard
bootstrap is not consistent when applied to parameters of the form v(µ), where v is a di-
rectionally differentiable function. Kitagawa, Payne, and Montiel Olea (2017) show that
Bayesian credible sets based on the quantiles of the posterior distribution of v(µ) will be
asymptotically equivalent to the frequentist bootstrap (which is not consistent in this case).
These results imply that typical frequentist and Bayesian inference for directionally differ-
entiable functions is not guaranteed to be consistent.

The next section shows that the special form of the directional derivative that arises in the
class of SVAR models studied in this paper allows the researcher to conduct (computation-
ally convenient) delta-method inference, with a slight adjustment on the standard errors.
We note that the recent paper of Hong and Li (2017) provides an alternative frequentist
point-wise consistent inference procedure for directionally differentiable functions of general
form. Such an approach, however, has two drawbacks compared to our delta method. First,
implementing the numerical delta-method in Hong and Li (2017) requires a user specified
tunning parameter. Second, their procedure requires the evaluation of the value function
for a large number of re-sampled values of µ (whereas our delta-method only requires the
evaluation of the value functions at µ̂).

4.3. Theorem 3

This section proposes a delta-method interval of the form

CST (1− α) ≡
[
vk,i,j(µ̂T )− z1−α/2 σ̂(k,i,j),T /

√
T , vk,i,j(µ̂T ) + z1−α/2 σ̂(k,i,j),T /

√
T
]
,

where
µ̂T ≡ (vec(ÂT )′, vec(Σ̂T )′),

is the LS estimator for µ defined as

ÂT ≡
( 1
T

T∑
t=1

YtX
′
t

)( 1
T

T∑
t=1

XtX
′
t

)−1
, Σ̂T ≡

1
T − np− 1

T∑
t=1

η̂tη̂
′
t,
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with
Xt ≡ (Y ′t−1, . . . , Y

′
t−p)′, η̂t ≡ Yt − ÂTXt.

We work under the assumption that
√
T (µ̂T − µ) is asymptotically normal with some co-

variance matrix Ω.13 We use the results in Theorem 2 and the asymptotic normality of µ̂T
to suggest the following formula for σ̂(k,i,j),T :

(4.3) σ̂(k,i,j),T ≡ max
r∈R(µ̂T )

(
v̇k,i,j(µ̂T ; r)′Ω̂T v̇k,i,j(µ̂T ; r)

) 1
2
,

where R(µ̂T ) is the set of all possible active constraints in program (2.5) evaluated at µ̂T .
Note that our procedure does not attempt to estimate neither the argmax nor the argmin
of program (2.5).

Frequentist Coverage: Let P denote the data generating process and let IRk,i,j(µ(P ))
denote the identified set for the structural parameter λk,i,j given the equality/inequality
restrictions in R(µ). This section shows that under our proposed specification of σ̂(k,i,j),T ,

lim inf
T→∞

inf
λ∈IR

k,i,j
(µ(P ))

P
(
λ ∈ CST (1− α)

)
≥ 1− α.

Consequently, the delta-method interval presented in this paper is point-wise consistent in
level.

Robust Bayesian Credibility: We also show that under some regularity conditions our
delta-method interval has, asymptotically, robust Bayesian credibility of at least the nominal
level. To formalize this statement, let P ∗ denote some prior for the structural parameters
(A1, . . . Ap, B) and let λk,i,j(A,B) ∈ R denote the structural coefficient of interest. For a
given square root of Σ ≡ BB′ define the orthogonal matrix Q ≡ Σ−1/2B. It is well known
that a prior P ∗ can be written as (P ∗µ , P ∗Q|µ), where P ∗µ is a prior on the reduced-form
parameters, and P ∗Q|µ is a prior on the orthogonal matrix, conditional on µ. Following this
notation, let P(P ∗µ) denote the class of prior distributions such that µ∗ ∼ P ∗µ .
Define the Robust Bayes Credibility of our delta-method region as

(4.4) RBC(Y1, . . . , YT ) ≡ inf
P∗∈P(P∗µ )

P ∗
(
λ(A,B) ∈ CST (1− α)

∣∣∣ Y1, . . . , YT

)
.

13A common formula for Ω̂ based on the assumption of uncorrelated, possibly heteroskedastic structural
innovations is given by

Ω̂T ≡
( 1
T

T∑
t=1

vec
(

[η̂tX′t, η̂tη̂′t − Σ̂T ]
)
vec
(

[η̂tX′t, η̂tη̂′t − Σ̂T ]
)′
.

Our delta-method approach is also valid under the presence of time-series dependence in ηt (we only need
a heteroskedasticity and autocorrelation robust estimator of Ω).
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We show that if the prior for the reduced-form parameters µ satisfies the Bernstein-von
Mises Theorem and the bounds of the identified set are differentiable then for any ε > 0:

lim
T→∞

P (RBC(Y1, . . . , YT ) < 1− α− ε) = 0

Thus, our delta-method interval has asymptotic robust Bayesian credibility of at least 1−α.
We now describe the main large-sample assumptions used to establish the frequentist

coverage and the robust Bayesian credibility of our delta-method interval.

4.3.1. Assumptions

The SVAR parameters (A1, . . . , Ap, B, F ) define a probability distribution, denoted P ,
over the data observed by the econometrician. Our main assumptions concerning P are
as follows. First, we assume that the LS estimator µ̂T is asymptotically normal with a
covariance matrix that can be estimated consistently.

Assumption 4 (Asymptotic Normality of µ̂T ) The data generating process P is such
that for µ(P ) ∈ Rd: √

T (µ̂T − µ(P )) d→ ζ(P ) ∼ Nd
(

0 , Ω(P )
)
,

and
Ω̂T

p→ Ω(P ).

Second, we will assume that the prior P ∗µ used to compute robust Bayesian credibility and
the data generating process P satisfy the Bernstein von-Mises Theorem in Ghosal, Ghosh,
and Samanta (1995). More precisely, we assume that:

Assumption 5 (Bernstein-von Mises Theorem)

sup
B∈B(Rd)

∣∣∣P ∗µ (√T (µ∗ − µ̂T ) ∈ B | Y1, . . . , YT

)
− P (ζ(P ) ∈ B)

∣∣∣ p→ 0,

where ζ(P ) ∼ Nd(0,Ω(P )), and B(Rd) is the set of all Borel measurable sets in Rd.

Assumption 5 is satisfied for Normal-Inverse Wishart prior (see Uhlig (2005)) in a VAR
model with Gaussian i.i.d. errors (see Gafarov, Meier, and Montiel Olea (2016)). More
generally, if the VAR reduced-form errors are i.i.d. Gaussian, Theorem 1 and 2 in Ghosal
et al. (1995) imply that Assumption 5 will be satisfied whenever P ∗µ has a continuous density
at µ with polynomial majorants.
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4.3.2. Large-sample coverage and robust Bayesian credibility

Dümbgen (1993), Shapiro (1991), and Fang and Santos (2015) have shown if v is a direc-
tionally differentiable function with directional derivative v̇µ(h) (in direction h evaluated at
µ) then: √

T (v(µ̂T )− v(µ)) d→ v̇µ(ζ),

whenever Assumption 4 holds. Theorem 2 in the previous section established that the di-
rectional derivative of vk,i,j—in direction h evaluated at µ—is given by

max
x∈X∗(µ)

[
v̇k,i,j(µ; r(µ;x)))′h

]
,

where X∗(µ) is the argmax of program (2.5) at µ. Thus, Theorem 2 and Assumption 4 imply
that

√
T (vk,i,j(µ̂T )− vk,i,j(µ)) d→ max

x∈X∗(µ)

[
v̇k,i,j(µ; r(µ;x))′ζ

]
,

where
v̇k,i,j(µ; r(µ;x))′ζ ∼ N1

(
0, v̇k,i,j(µ; r(µ;x))′Ωv̇k,i,j(µ; r(µ;x))

)
.

Our suggestion—which exploits the specific form of the directional derivative in the SVAR
context—is to consider:

σ̂(k,i,j),T ≡ max
r∈R(µ̂T )

(
v̇k,i,j(µ̂T ; r)′Ω̂T v̇k,i,j(µ̂T ; r)

) 1
2
,

where R(µ̂T ) is the set of all the different collections of active constraints evaluated at µ̂T .
The idea is that σ̂(k,i,j),T converges in probability to

max
r∈R(µ)

(
v̇k,i,j(µ; r)′Ωv̇k,i,j(µ; r)

) 1
2
,

which is larger than or equal to

max
x∈X∗(µ)

(
v̇k,i,j(µ; r(µ, x))′Ωv̇k,i,j(µ; r(µ, x))

) 1
2
.

Thus, our formula for the standard error implies that there is no need to estimate neither
the argmax nor the argmin of the program defining v(µ). The suggested confidence interval
is shown to be point-wise consistent in level.14 We also show that our delta-method interval

14The question of how to build a uniformly consistent in level, delta-method confidence set for a set-
identified parameter is beyond the scope of this paper. For the readers interested in uniform inference for
set-identified parameters in SVARs our suggestion is to apply the projection approach developed in Gafarov
et al. (2016). In comparison, the delta-method approach described in this paper is faster to implement.
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has, asymptotically, robust Bayesian credibility of at least the nominal level (provided some
regularity conditions are satisfied). These two properties are formalized in the following
theorem.

Theorem 3 Let σ̂(k,i,j),T be defined as in (4.3). Suppose that the asymptotic variance of
the candidate value functions in X∗(µ) and X∗(µ) are strictly positive; that is

min
x∈X∗(µ(P ))∪X∗(µ(P ))

||Ω1/2(P )v̇k,i,j(µ(P ); r(µ(P );x))|| > 0.

a) If Assumptions 1-4 are satisfied at µ = µ(P ), then

lim inf
T→∞

inf
λ∈IR

k,i,j
(µ(P ))

P
(
λ ∈ CST (1− α)

)
≥ 1− α.

b) If in addition Assumption 5 holds and X∗(µ(P )) and X∗(µ(P )) are both singletons, then
for any ε > 0:

lim
T→∞

P

(
inf

P∗∈P(P∗µ )
P ∗
(
λ(A,B) ∈ CST (1− α)

∣∣∣ Y1, . . . , YT

)
< 1− α− ε

)
= 0.

Proof: See Appendix A.5.
Note that we have assumed that the identified set is non-empty at µ, and we have also

showed that under Assumptions 1-4 the probability of observing an empty identified set at
µ̂T converges to zero as the sample size grows to infinity. It is of course still possible to
observe an empty identified set at a given realization of µ̂T . In this case, our algorithm will
report a maximum response equal to −c and a minimum response equal to c.15

4.3.3. Monte-Carlo Evidence

Frequentist Coverage: We conduct a simple Monte-Carlo exercise to study the cov-
erage probability of our delta-method interval. We set (1−α) = .68 implying that z1−α/2 =
.9945. Instead of generating new draws of (Y1, . . . , YT ), we generate 10, 000 draws of µ̂T
directly from its asymptotic normal distribution Nd(µ,Ω/T ) (where we fix the values of µ
and Ω at its estimated values in the UMP example). We decided to proceed in this way in
order to ‘enforce’ the asymptotic normality assumption for µ̂T (which is the key requirement
in part a) of Theorem 3). We set T = 342 which corresponds to the number of periods in
our empirical application.
For each ‘draw’ of µ̂T (denoted µ∗) we compute the interval[

vk,i,j(µ∗)− .9945 σ∗(k,i,j),T /
√
T , vk,i,j(µ∗) + .9945 σ∗(k,i,j),T /

√
T
]
,

15In our Matlab implementation, this will generate a warning message asking the user to drop restrictions.
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where we treat Ω as known to compute the formula for the standard error σ̂(k,i,j),T . We do
this to assume away any problem concerning the estimation of Ω (as Theorem 3 assumes
that we have a consistent estimator for the asymptotic variance of µ̂T ).

Finally, we check whether [vk,i,j(µ̂T ), vk,i,j(µ̂T )] is contained in the confidence interval
corresponding to each draw µ∗ from Nd(µ̂T , Ω̂T ). The estimated probability provides a lower
bound on the coverage of the identified parameter. The results are reported in Figure 2.
We note that the simulated coverage probability lies between 68% and 84% (except for
the contemporaneous IRF for FFR which is equal to zero by assumption). The simulated
coverage probability is higher than the nominal size of 68%. This is consistent with our
theorem, as we are using a standard error that protects against potential violations of full
differentiability (even when the function is differentiable at µ).16

Robust Bayesian Credibility in the UMP application: We also compute the
robust Bayesian credibility of our delta-method interval based on an uninformative Normal-
Inverse Wishart prior on µ (following Uhlig (2005)). Namely, we generate 10, 000 draws of µ∗

from the posterior distribution and report the share of draws for which [vk,i,j(µ∗), vk,i,j(µ∗)]
is contained in[

vk,i,j(µ̂T )− .9945 σ̂(k,i,j),T /
√
T , vk,i,j(µ̂T ) + .9945 σ̂(k,i,j),T /

√
T
]
.

The results are provided in Figure 3. The simulated credibility is larger or close to the
nominal level of 68%, which is consistent with part b of Theorem 3. We also report the
robust Bayesian credibility based on the asymptotic normal approximation in Figure 5 in
Appendix B.1.

16One can use the ideas of Freyberger and Horowitz (2015) to propose an alternative estimator for the
standard error which could deliver yet tighter CS. We leave this extension for further research.
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5. UNCONVENTIONAL MONETARY POLICY SHOCKS

In August 2010 the Federal Open Market Committee announced: “The Committee will
keep constant the Federal Reserve’s holdings of securities at their current level by reinvesting
principal payments from agency debt and agency mortgage-backed securities in longer-term
Treasury securities.” This announcement was an important prelude for the second part of
the Quantitative Easing program (QE2) (see p. 244 in Krishnamurthy and Vissing-Jorgensen
(2011) for a detailed discussion). In addition, this announcement generated a drop in the
intraday yield for two- and ten- year treasury bond. In fact, from the end of July 2010 to
the end of August 2010 the 2 year Treasury bond rate fell by 10 basis points.
Figure 4 uses our delta-method approach to construct confidence bands for the evolution

of the levels of the four variables in the monetary SVAR. We fix all the variables at their
level on July 2010 and we trace their evolution (over a 12-month window) according to
the confidence set for their cumulative responses. The motivation for this exercise is as fol-
lows. Suppose that—back in August 2010—an econometrician is asked to provide confidence
bands for the evolution of IP, CPI, 2YTB, and FF after the August 2010 announcement of
the Federal Open Market Committee (FOMC). The econometrician observes the realization
of the macroeconomic variables from July 1979 until August 2010, but decides to deliber-
ately ignore the two years of data after the crisis (to avoid introducing structural changes,
stochastic volatility, or any other feature that will complicate the estimation of the VAR).
The econometrician uses the data until December 2007—one semester before the financial

crisis—to conduct delta-method inference on the cumulative responses to a one standard
deviation unconventional monetary policy shock. The econometrician then uses these cumu-
lative responses to get a rough idea of the evolution of the variables (in levels) following the
announcement of the Federal Reserve in August 2010. The econometrician assumes there is a
linear trend for CPI/IP, and ignores sampling uncertainty coming from the trend estimation
in reporting the bands.
An ex-post evaluation of this exercise (over a window of 12 months) is reported in Fig-

ure 4.17 We note that the observed dynamics for CPI, IP, GS2, and FFR from August 2010
to July 2011 fall within the bounds motivated by our delta-method interval. We also note
that our delta-method interval misses the observed value at most three out of 12 months,
which means that our 68% confidence set covers each of these variables at least 75% of the
time. We also report the 68% Bayesian credible sets.

17The reason to focus in a 12-month window is to cover the period between the QE2 announcement and
the announcement of the so-called “Operation Twist” in September 2011. See http://www.federalreserve.
gov/newsevents/press/monetary/20110921a.htm.

http://www.federalreserve.gov/newsevents/press/monetary/20110921a.htm
http://www.federalreserve.gov/newsevents/press/monetary/20110921a.htm
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Computational Cost: We close this section with some comments regarding the com-
putational cost of our delta-method procedure. Most of the work to compute the endpoints
of the identified set and its derivatives is analytical. Consequently, practitioners can expect
the computational burden of our procedure to be low. We note that the implementation of
our delta-method interval in the running example takes only around .15 seconds (using a
standard Laptop @2.4GHz IntelCore i7).

Comparison with the Projection Approach: Figure 6 in Appendix B.1 presents
a comparison between the delta-method approach and the projection approach recently
proposed by Gafarov et al. (2016) [GMM16]. The projection approach has two theoretical
properties that we were not able to verify for the delta-method. First, projection is consistent
in level uniformly over a reasonable class of data generating processes. Second, projection
yields valid simultaneous inference; that is, it covers the whole impulse-response function
(across different horizons and different variables) and not only its scalar coefficients.18 We
note that in our application the projection confidence interval (which is wider than the delta-
method bands) contains the realized value of IP, CPI, 2YTB, and FF for every horizon under
consideration.

Comparison with GK Robust Approach: Figure 7 in the Appendix reports the
robust-Bayesian credible set in Giacomini and Kitagawa (2015). The implementation of
the robust-Bayes credible set (based on 10,000 posterior draws and using our algorithm to
evaluate the endpoints) took around 9,106 seconds.19

Comparison with GSM: Figure 9 in the Appendix reports the 68% Bonferroni confi-
dence set of Granziera et al. (2017).20 Appendix A.7.1 describes the algorithm and related
computational issues. The computational cost is approximately 4,000 seconds on a single
core machine for 10,000 grid points.
It is hard to provide a general theoretical comparison of the length of the Bonferroni CS

and the delta method. The efficiency ranking of the two procedures is likely depend on the
particular DGP. One can see that, in our illustrative example, the 68% delta method CS
is tighter than the corresponding Bonferroni CS with the same nominal level for almost all
combinations of the horizons and time series. One possible explanation behind the larger
length of Granziera et al. (2017) is that their procedure is uniformly consistent in level
over the class of GDPs for which the reduced form impulse response functions converge to a

18While our paper focuses on point-wise inference, it is straightforward to provide joint inference by
applying Bonferroni correction to the significance level. Figure 8 compares confidence sets that cover not
only a single impulse response but the impulse response functions of all variables and all horizons of interest.
We compare our Delta-method results when using a Bonferroni-correction with Inoue and Kilian (2013)’s
joint Bayes credible set for impulse response functions using the priors for the reduced-form parameters in
Uhlig (2005). See Appendix A.7.2.

19Out of which 1,266 seconds were used just to compute the identified set for each posterior draw, and
the remaining time to translate the posterior bounds into the GK robust bounds

20Granziera et al. (2017) also propose a projection-based CS which is a special case of the Bonferroni
CS. There is no clear theoretical ranking of the various CS proposed in that paper so we chosen the least
computationally intensive variation.
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normal distribution. We note that our delta-method is not guaranteed to have this property.

6. CONCLUSION

This paper focused on set-identified structural VAR models that impose equality and in-
equality restrictions to set-identify only one structural shock. For this class of models, the
endpoints of the identified set have special properties that allow an intuitive and compu-
tationally simple approach to conduct frequentist and (asymptotic) robust Bayes inference.
Specifically, the paper made three contributions:
(i) We presented an algorithm to compute—for each horizon, each variable, a fixed

vector of reduced-form parameters, and a given collection of equality and/or inequality
restrictions—the largest and smallest value of the coefficients of the structural IRF (see
Theorem 1). Our algorithm did not require random sampling from the space of orthogonal
matrices or unit vectors. Instead, we treated the bounds of the identified set as the maximum
and minimum value of a mathematical program whose solutions we were able to characterize
analytically. Our algorithm can be used outside our delta-method framework (for example,
in computing the maximum and minimum response for the Giacomini and Kitagawa (2015)
robust Bayes approach).
(ii) We provided sufficient conditions under which the largest and smallest value of the

structural parameters are directionally differentiable functions of the reduced-form param-
eters (see Theorem 2). This result also seems to be of interest in its own right and could
be used to explore the frequentist properties of the robust-Bayesian procedure in Giacomini
and Kitagawa (2015).
(iii) Finally, we proposed a computationally convenient delta-method approach to conduct

inference for the set-identified coefficients of the structural IRF. We presented sufficient
conditions to guarantee the point-wise consistency in level and asymptotic robust Bayes
credibility of our suggested inference approach. We note that the delta-method in this paper
exploited the structure of the directional derivative.
We illustrated our results by set-identifying the responses of different U.S. macroeconomic

variables to an unconventional monetary policy shock. We used the theory and methods
developed in this paper to assess the effects of the announcement of the second part of the
Quantitative Easing program in August 2010.
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APPENDIX A: MAIN RESULTS

A.1. Lemma 1

We now show that Assumptions 1 and 2 imply that given a collection r ∈ Rn×m of ‘active’ constraints
(m ≤ n − 1) the maximum response is determined in closed-form (and up to sign) by the Karush-Kuhn-
Tucker conditions of programs (2.5) and (2.6). The following Lemma constitutes the basis of Theorem 1.

Lemma 1 Suppose that Assumptions 1 and 2 hold. Let r be a matrix of dimension n×m collecting the
gradients of the ‘active’ (binding) constraints at a solution x∗(µ) of the mathematical program (2.5), then :

a) vk,i,j(µ) is given by either plus or minus the norm of the residual of the projection of Σ1/2Ck(A)′ei into
the space spanned by the columns of Σ1/2r; that is

(A.1) vk,i,j(µ) =
(
e′iCk(A)Σ1/2MΣ1/2rΣ

1/2Ck(A)′ei
)1/2

,

or

(A.2) vk,i,j(µ) = −
(
e′iCk(A)Σ1/2MΣ1/2rΣ

1/2Ck(A)′ei
)1/2

,

where
MΣ1/2r ≡ In − Σ1/2r(r′Σr)−1r′Σ1/2.

b) If in addition vk,i,j(µ) 6= 0, then x∗(µ) is given by

x∗(µ) = Σ1/2
(
MΣ1/2r

)
Σ1/2Ck(A)′ei

/
vk,i,j(µ).

Consequently, the sign of vk,i,j(µ) depends on which of the two values of x∗(µ) in the equation above (the
one with (A.1) in the denominator or the one with (A.2)) satisfies the sign restrictions that are not in r.

Proof: Let S(µ) denote the n×ms matrix of ms ‘sign’ restrictions and let Z(µ) denote the n×mz matrix of
‘zero’ restrictions. For notational simplicity, we deliberately ignore the dependence of the equality/inequality
restrictions on µ. The problem in equation (2.5) is equivalent to

(A.3) vk,i,j(µ) ≡ max
x∈Rn

e′iCk(A)x subject to x′Σ−1x = 1, S′x ≥ 0ms×1, Z′x = 0mz×1.

The auxiliary Lagrangian function is given by

L(x, λ, w1, w2;µ) = e′iCkx− λ(x′Σ−1x− 1)− w′1(S′x)− w′2(Z′x).

Assumptions 1–2 imply that we can characterize the maximum response using the Karush-Kuhn-Tucker
conditions for the mathematical program in (2.5). The Karush-Kuhn-Tucker necessary conditions for this
problem are as follows:

Stationarity : C′k(A)ei − 2λΣ−1x− Sw1 − Zw2 = 0n×1,

Primal Feasibility : x′Σ−1x = 1,

S′x ≥ 0ms×1,

Z′x = 0mz×1,

Complementary Slackness : w1i(e′iSx) = 0 ∀ i = 1 . . .ms,
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plus the additional dual feasibility constraint requiring the Lagrange multipliers, w1i, to be smaller than or
equal to zero.

Let x∗(µ) be one (out of possibly many) maximizers of the program of interest and suppose that the n×m
matrix r collects all the restrictions that are active (binding). Because of Assumption 1 and 2 , the matrix
r is of full rank m and m must be smaller than or equal n − 1. Using Stationarity, Primal Feasibility, and
Complementary Slackness at x∗ we get

0 = x∗′[Ck(A)′ei − 2λ∗Σ−1x∗ − Sw1 − Zw2] = x∗′Ck(A)′ei − 2λ∗x∗′Σ−1x∗ − x∗′Sw1 − x∗′Zw2

= x∗′Ck(A)′ei − 2λ∗ − x∗′Sw1 − x∗′Zw2

(where we have used x∗′Σ−1x∗ = 1)

= x∗′Ck(A)′ei − 2λ∗

(where we have used x∗′Z = 0mz×1 and complementary slackness)

= vk,i,j(µ)− 2λ∗,
where vk,i,j(µ) denotes the value of the maximum response when the constraints in r are active. Thus, the
Lagrange multiplier λ∗ is unique and given by

λ∗ =
1
2
vk,i,j(µ).

Note also that λ∗ 6= 0 if and only if vk,ij(µ; r) 6= 0. We now show that there are unique w∗1 and w∗2 that satisfy
the Karush-Kuhn Tucker conditions. Let w∗ denote the nonzero components of w∗1 and all the components
of w∗2 . Note that left multiplying the stationarity condition by Σ and rearranging the terms we have :

2λ∗x∗′ =
(
Ck(A)′ei − rw∗

)′
Σ,(

Ck(A)′ei − rw∗
)′

Σ
(
Ck(A)′ei − rw∗

)
= 4(λ∗)2x′Σ−1x(A.4)

= 4(λ∗)2

(where we have used x∗′Σ−1x∗ = 1)

= 4
(1

2
vk,i,j(µ)

)2

= vk,i,j(µ)2.

Consequently the value function given active constraints r is given by either

vk,i,j(µ) =
[(
Ck(A)′ei − rw∗

)′
Σ
(
Ck(A)′ei − rw∗

)]1/2
,

or

vk,i,j(µ) = −
[(
Ck(A)′ei − rw∗

)′
Σ
(
Ck(A)′ei − rw∗

)]1/2
.

We will use the first order conditions to find the vector of Lagrange multipliers w∗ and show that they are
unique. Note that

0 = 2λ∗r′x∗ =
[
r′Σ(Ck(A)′ei − rw∗)

]
=

[
r′ΣCk(A)′ei − r′Σrw∗

]
.

Under the assumptions of the lemma, r is of rank m. The equation above holds if and only if
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w∗ = (r′Σr)−1r′ΣCk(A)′ei.

Consequently, the Lagrange multipliers for the active restrictions are unique. To conclude the proof, we get
an explicit expression of the value function in terms of µ. To do so, note that

Σ1/2
(
Ck(A)′ei − rw∗

)
= Σ1/2Ck(A)′ei − Σ1/2rw∗

= Σ1/2Ck(A)′ei − Σ1/2r(r′Σr)−1r′ΣCk(A)′ei

=
(
In − Σ1/2r(r′Σr)−1r′Σ1/2

)
Σ1/2Ck(A)′ei

=
(
In − PΣ1/2r

)
Σ1/2Ck(A)′ei

= MΣ1/2rΣ
1/2Ck(A)′ei.

Therefore, the equation above and (A.4) imply that either

vk,i,j(µ) =
[
e′iCk(A)Σ1/2MΣ1/2rΣ

1/2Ck(A)′ei
]1/2

or

vk,i,j(µ) = −
[
e′iCk(A)Σ1/2MΣ1/2rΣ

1/2Ck(A)′ei
]1/2

.

Furthermore, since any solution for which r is the set of binding constraints satisfies 2λ∗x∗′ = (Ck(A)′ei −
rw∗)′Σ, then for any vk,i,j(µ) 6= 0 the solution x∗ should be given by either

x∗ = Σ1/2
(
MΣ1/2r

)
Σ1/2Ck(A)′ei

/[
e′iCk(A)Σ1/2MΣ1/2rΣ

1/2Ck(A)′ei
]1/2

,

or

x∗ = −Σ1/2
(
MΣ1/2r

)
Σ1/2Ck(A)′ei

/[
e′iCk(A)Σ1/2MΣ1/2rΣ

1/2Ck(A)′ei
]1/2

.

In any case the Lagrange multipliers for the active constraints are given (as shown above) by,

w∗ = (r′Σr)−1r′ΣCk(A)′ei.

A.2. Proof of Theorem 1

The choice set of program (2.5) is non-empty (by Assumption 1) and compact (because of the ellipsoid
constraint BB′ = Σ). Hence, the maximum exists. Let x∗ ∈ Rn be a solution and let r∗ be the set of
constraints that are active at x∗.

Step 1: We show first that

vk,i,j(µ) ≥ max
r∈R

(
max{f+

max(µ; r), f−max(µ; r)}
)
.

We do so by considering two different cases.

Case 1.1: Take any r ∈ R, and assume first that vk,i,j(µ; r) 6= 0. If 1ms (x∗+(µ; r)) = 0, then

f+
max(µ; r) = vk,i,j(µ; r)− 2c ≤ c− 2c = −c < vk,i,j(µ),
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where the first equality above follows from the definition of f+
max and the two remaining inequalities follow

from the definition of the penalty term c.
Note, however, that if r ∈ R is such that 1ms (x∗+(µ; r)) = 1, then x∗+(µ; r) satisfies all the equality and

inequality restrictions in (2.5) and, by construction, also satisfies the ellipsoid constraint

x∗+(µ; r)′Σ−1x∗+(µ; r) = 1.

Consequently, vk,i,j(µ) ≥ f+
max(µ; r) for all r ∈ R. An analogous argument shows that vk,i,j(µ) ≥ f−max(µ; r).

This implies that

vk,i,j(µ) ≥ max{f+
max(µ; r), f−max(µ; r)},

for all r ∈ R such that vk,i,j(µ; r) 6= 0.

Case 1.2: Consider now any r such that vk,i,j(µ; r) = 0. If there is no feasible point x∗ that gives such a value,
then f+

max(µ; r) = f−max(µ; r) = −2c < vk,i,j(µ). If there is such a feasible point x∗ 6= 0 then f+
max(µ; r) =

f−max(µ; r) = 0. Since x∗ is in the choice set of the program (2.5), then f+
max(µ; r) = f−max(µ; r) = 0 ≤

vk,i,j(µ).
Therefore, Case 1.1 and 1.2 imply that

vk,i,j(µ) ≥ max{f+
max(µ; r), f−max(µ; r)} for all r ∈ R.

Step 2: We now show that

vk,i,j(µ) ≤ max
r∈R

(
max{f+

max(µ; r), f−max(µ; r)}
)
.

Again, we consider two cases.

Case 2.1: Assume first that vk,i,j(µ) 6= 0. Without loss of generality, let us assume that vk,i,j(µ) > 0 (the
case in which vk,i,j(µ) < 0 is completely analogous). Let r∗ ∈ R denote the set of active restrictions (which
by Assumptions 1 and 2 has at most n − 1 columns) at the solution x∗ (this is one out of the potentially
many solutions to the program). By Lemma 1 we know that

vk,i,j(µ) =
(
e′iCk(A)Σ1/2MΣ1/2r∗Σ1/2Ck(A)′ei

)1/2
,

and

x∗(µ; r∗) = Σ1/2
(
MΣ1/2r∗

)
Σ1/2Ck(A)′ei

/(
e′iCk(A)Σ1/2MΣ1/2r∗Σ1/2Ck(A)′ei

)1/2
.

Since this point satisfies the sign restrictions not in r∗ (because it is a solution), then(
e′iCk(A)Σ1/2MΣ1/2r∗Σ1/2Ck(A)′ei

)1/2
= f+

max(µ; r∗).

Consequently,

vk,i,j(µ) = f+
max(µ; r∗) ≤ max

r∈R

(
max{f+

max(µ; r), f−max(µ; r)}
)
.

Case 2.2: If vk,i,j(µ) = 0, there is an x∗ 6= 0 in the choice set. Hence, the Karush-Kuhn-Tucker conditions
imply that Ck(A)′ei is a linear combination of the active constraints that generate the value of zero (which
means, by definition of the algorithm, that there is an r∗ such that f+

max(µ; r∗) = f−max(µ; r∗) = 0).

Therefore, vk,i,j(µ) = f(µ; r∗) ≤ maxr∈R
(

max{f+
max(µ; r), f−max(µ; r)}

)
.



DELTA-METHOD INFERENCE 35

As the result, the value function vk,i,j(µ) is obtained by computing the Karush-Kuhn-Tucker points in
Lemma 1 for each r, penalizing the value vk,i,j(µ; r) if not feasible, and maximizing over all the possible
values of r.

The proof for the lower bound is analogous;

vk,i,j(µ) = min
r∈R

(
min{f+

min(µ; r), f−min(µ; r)}
)
,

with:
f+
min(µ; r) ≡ vk,i,j(µ; r) + 2(1− 1ms (x∗+(µ; r)))c,

f−min(µ; r) ≡ −vk,i,j(µ; r) + 2(1− 1ms (x∗−(µ; r)))c.

A.3. Lemma 2

Lemma 2 Suppose that Assumptions 1-3 hold. Let r(µ) be a matrix of dimension n× l collecting the gra-
dients of the ‘active’ (binding) constraints at a solution x∗(µ) of the mathematical program (2.5) such that
vk,i,j(µ; r(µ)) 6= 0. Then vk,i,j(µ; r(µ)) is differentiable with respect to µ with the derivative v̇k,i,j(µ; r(µ))
given by


∂vk,i,j(µ;r(µ))

∂vec(A)

∂vk,i,j(µ;r(µ))
∂vec(Σ)

 =

 ∂vec(Ck(A))
∂vec(A) (x∗(µ; r(µ))⊗ ei)−

∑l

k=1 w
∗
k
∂vec(rk(µ))
∂vec(A) x∗(µ; r(µ))

λ∗(Σ−1x∗(µ; r(µ))⊗ Σ−1x∗(µ; r(µ)))−
∑l

k=1 w
∗
k
∂vec(rk(µ))
∂vec(Σ) x∗(µ; r(µ))

 ,
where rk(µ) denotes the k-th column of r(µ),

x∗(µ; r(µ)) = Σ1/2
(
MΣ1/2r(µ)

)
Σ1/2Ck(A)′ei

/
vk,i,j(µ; r(µ)),

λ∗ ≡
1
2
vk,i,j(µ; r(µ)), w∗ ≡ [r(µ)′Σr(µ)]−1r(µ)′ΣCk(A)ei,

and w∗k is the k-th component of the vector w∗.

Proof: Note first that Assumption 3 implies that r ≡ r(µ) is differentiable with respect to µ. Moreover,
since vk,i,j(µ; r) 6= 0 the function

vk,i,j(µ; r) =
(
e′iCk(A)Σ1/2MΣ1/2rΣ

1/2Ck(A)′ei
)1/2

is differentiable as well. Moreover, the function

x∗(µ; r) ≡ Σ1/2
(
MΣ1/2r

)
Σ1/2Ck(A)′ei

/
vk,i,j(µ; r)

is also differentiable. Therefore,

dvk,i,j(µ; r)
dµ

=
d[e′iCk(A)x∗(µ; r)]

dµ

(since vk,i,j(µ; r) = e′iCk(A)x∗(µ; r))

=
dx∗(µ; r)

dµ
C′k(A)ei +

d(x∗(µ; r)′ ⊗ e′i)vec(Ck(A))
dµ

,

(where we have re-written e′iCk(A)x∗ as (x∗′ ⊗ e′i)vec(Ck(A)))

=
dx∗(µ; r)

dµ
C′k(A)ei +

dvec(Ck(A))
dµ

(x∗(µ; r)⊗ ei)

(where we have applied the chain rule for matrix derivatives).
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We now use the envelope theorem to compute this derivative. Note that —using Assumptions 1 and 2—
Lemma 1 shows the existence of unique multipliers λ∗ ∈ R and w∗ ∈ Rl such that

Ck(A)′ei = λ∗2Σ−1x∗(µ; r) + rw∗.

Therefore,

dvk,i,j(µ; r)
dvec(A)

=
dx∗(µ; r)
dvec(A)

[
λ∗2Σ−1x∗(µ; r) + rw∗

]
+
dvec(Ck(A))
dvec(A)

(x∗(µ; r)⊗ ei)

and

dvk,i,j(µ; r)
dvec(Σ)

=
dx∗(µ; r)
dvec(Σ)

[
λ∗2Σ−1x∗(µ; r) + rw∗

]
+
dvec(Ck(A))
dvec(Σ)

(x∗(µ; r)⊗ ei).

Note also that because x∗(µ, r) satisfies the ellipsoid constraint

0 =
dx∗(µ; r)′Σ−1x∗(µ; r)

dvec(A)
= 2

dx∗(µ; r)
dvec(A)

Σ−1x∗(µ; r)

and, also, since the equality constraints are met,

0 =
dr(µ)′x∗(µ; r(µ))

dvec(A)

=
dx∗(µ; r)
dvec(A)

r(µ) +
(
dr1(µ)
dvec(A)x

∗(µ; r(µ)), · · · ,
drl(µ)
dvec(A)x

∗(µ; r(µ))
)
,

where rk(µ) denotes the k-th column of r(µ). Consequently,

dvk,i,j(µ; r)
dvec(A)

=
dvec(Ck(A))
dvec(A)

(x∗(µ; r)⊗ ei)−
l∑

k=1

w∗k
dvec(rk(µ))
dvec(A)

x∗(µ; r),

where w∗k is the k-th entry of the vector of lagrange multipliers w∗. This gives the partial derivative of
vk,i,j(µ; rl(µ)) with respect to vec(A). We note that this derivative can also be written as

dvk,i,j(µ; r)
dvec(A)

=
dvec(Ck(A))
dvec(A)

(x∗(µ; r)⊗ ei)−
dvec(r(µ)′)
dvec(A)

(x∗(µ; r)⊗ Il)w∗,

which is the expression given in the overview. Finally, to get the derivative with respect to vec(Σ) we note
that

0 =
dx∗(µ; r)′Σ−1x∗(µ; r)

dvec(Σ)
= 2

dx∗(µ; r)
dvec(Σ)

Σ−1x∗(µ; r)− (Σ−1x∗(µ; r)⊗ Σ−1x∗(µ; r)),

and

0 =
dr(µ)′x∗(µ; r(µ))

dvec(Σ)

=
dx∗(µ; r(µ))
dvec(Σ)

r(µ) +
(
dr1(µ)
dvec(Σ)x

∗(µ; r(µ)), · · · ,
drl(µ)
dvec(Σ)x

∗(µ; r(µ))
)
.

Consequently,

dvk,i,j(µ; r)
dvec(Σ)

= λ∗(Σ−1x∗(µ; r)⊗ Σ−1x∗(µ; r))−
l∑

k=1

w∗k
dvec(rk,l(µ))
dvec(Σ)

x∗(µ; r).

A.4. Proof of Theorem 2

Structure of the proof: The proof proceeds in five steps. First, we show that Assumptions 1 and 2
imply that the choice set of program (2.5) is non-empty for any µ̃ in a neighborhood of µ. Second, we show
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that the choice set of program (2.5) is both lower and upper-hemicontinuous correspondence at µ. Third,
we use the continuity of the choice set and the Maximum theorem to establish continuity of vk,i,j(·) at µ.
Fourth, we use Lemma 1 and the continuity of vk,i,j(·) to show that

max
r∗
l

(µ)∈R∗(µ)
{v̇k,i,j(µ, r∗l (µ))′h} ≤ lim inf

N→∞
tN (vk,i,j(µN )− vk,i,j(µ)).

Finally, we use Lemma 1, Theorem 1, and Lemma 2 to show (by contradiction) that

lim sup
N→∞

tN (vk,i,j(µN )− vk,i,j(µ)) ≤ max
r∗
l

(µ)∈R∗(µ)
{v̇k,i,j(µ, r∗l (µ))′h}.

Step 1 : By Assumption 1 there is a point x∗ ∈ Rn that belongs to the choice set of program (2.5). Let
Z∗(µ) ∈ Rn×me denote the restrictions in program (2.5) that are active at x∗. By Assumption 2, we know
that me ≤ n − 1. Let S∗(µ) ∈ Rn×mi denote all the other restrictions that are not in Z∗(µ). This means
that S∗(µ)′x∗ > 0mi×1 (since these restrictions are not in Z∗(µ)). Note first that Assumption 2 implies
there is ε1 > 0 such that λmin(µ) ≡ min eig(Z∗(µ)′Z∗(µ)) > ε1. Since x∗ is feasible we can also pick ε2
such that (s∗m(µ)/||s∗m(µ)||)′x∗(µ) is larger than ε2 for each m ∈ {1, 2, . . . ,mi}. Define

U(µ) ≡ {µ̃ | λmin(µ̃) > ε1, (s∗m(µ̃)/||s∗m(µ̃)||)′x∗ > ε2 ∀m, ||Z∗(µ̃)′x∗|| <
√
ε1ε2/2} ∩M.

By construction µ ∈ U(µ). Moreover, the continuity of Z(·) and S(·) and openness ofM implies that Z∗(·)
and S∗(·) are continuous and therefore U(µ) is open. We now show that for every µ̃ ∈ U(µ) there is x̃ ∈ Rd

that satisfies the equality restrictions in Z∗(µ̃) and also the inequalities in S∗(µ̃) with slack. To formalize
this point, define

(A.5) x̃ ≡ x̃(µ̃, µ) ≡ x∗ −NZ∗(µ̃)x
∗,

where NZ∗(µ̃) ≡ Z∗(µ̃)(Z∗(µ̃)′Z∗(µ̃))−1Z∗(µ̃)′ is well defined because λmin(µ̃) > ε1. Note first that, by
construction,

Z∗(µ̃)′x̃ = Z∗(µ̃)′x∗ − Z∗(µ̃)′NZ∗(µ̃)x
∗ = Z∗(µ̃)′x∗ − Z∗(µ̃)′Z∗(µ̃)(Z∗(µ̃)′Z∗(µ̃))−1Z∗(µ̃)′x∗ = 0me×1,

implying that the equality restrictions at Z∗(µ̃) are satisfied by x̃. Thus, we only need to show that the
inequalities in s∗m(µ̃) are satisfied with slack (after normalizing by its norm). To see this, simply note that

(s∗m(µ̃)/||s∗m(µ̃)||)′x̃ = (s∗m(µ̃)/||s∗m(µ̃)||)′(x̃− x∗) + (s∗m(µ̃)/||s∗m(µ̃)||)′x∗

> (s∗m(µ̃)/||s∗m(µ̃)||)′(x̃− x∗) + ε2

≥ −|s∗m(µ̃)/||s∗m(µ̃)||)′(x̃− x∗)|+ ε2

≥ −||(x̃− x∗)||+ ε2.

But
||x̃− x∗|| = (x∗′Z∗(µ̃)(Z∗(µ̃)′Z∗(µ̃))−1Z∗(µ̃)x∗)1/2

≤ sup
ω s.t. ||ω||=1

(ω(Z∗(µ̃)′Z∗(µ̃))−1ω)1/2||Z∗(µ̃)x∗||

= ||Z∗(µ̃)x∗||
√
λmin(µ̃)

≤ (
√
ε1ε2/2

√
ε1)

= ε2/2.
This implies that s∗m(µ̃)′x̃ > 0 for every m ∈ {1, 2, . . . ,mi}. This shows that for every µ̃ ∈ U(µ), x̃ ∈ R(µ̃).
To complete Step 1, notice that x† ≡ x̃/(x̃′Σ̃−1x̃) ∈ R(µ̃). By construction, x† is in the choice set of program
2.5 evaluated at µ̃.

Step 2 : Let the multivalued correspondence Γ(·) :M→ Rn be defined as the choice set of program (2.5).
We show continuity of this correspondence at µ by showing that it is both lower and upper hemicontinuous.
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To establish upper hemicontinuity, pick any sequence µN ∈M s.t. µN → µ and any converging sequence
xN ∈ Γ(µN ) s.t. xN → x∗. Consider any sign restriction s(µN ). By construction, s(µN )′xN ≥ 0. By
continuity of s(µn), we get in the limit s(µ)′x∗ ≥ 0. Similarly, (x∗)′Σ−1(x∗) = 1 and for any zero restriction
z(µ)′x∗ = 0. The set Γ(µ) is compact, so by Theorem 2 on p. 218 in Ok (2007), Γ(·) is upper hemicontinuous
at µ.

To establish lower hemicontinuity, consider any sequence µN ∈M s.t. µN → µ and any point x∗ ∈ Γ(µ).
Then, by Step 1, the elements of the sequence defined as

xN ≡ x̃(µN , µ)/(x̃(µN , µ)′Σ−1x̃(µN , µ))

belong to Γ(µN ). By continuity of Z∗(·) and Σ−1 at µ ∈ M (implied by Assumption 3) and using the
invertibility of the matrices (Z∗(µ̃N )′Z∗(µ̃N )) for N large enough ( implied by Assumption 2 ) we have
xN → x∗. By Proposition 4 on p. 224 in Ok (2007), Γ(µ) is lower hemicontinuous. By definition, it is
continuous at µ.

Step 3 : Let (Θ, ρ) ≡ (U(µ), ρ) be a metric space with Euclidean metric ρ(·). By Steps 1 and 2, the
choice set of the program in (2.5) is a non-empty, compact-valued, continuous correspondence at µ. By the
Maximum theorem, see p. 229 in Ok (2007), vk,i,j(·) is continuous at µ.

Additional Notation: Consider any sequence µN = (vecAN ′, vecΣN ′)′ such that

µN = µ+ hN/tN ,

where hN → h ∈ Rd, tN →∞ and such that µN belongs to the parameter spaceM for N large enough. By
Step 1 there exists N∗ large enough such that the choice set of the program in (2.5) at µN is non-empty for
every N ≥ N∗. Thus, vk,i,j(µN ) is well-defined for N large enough. Moreover, the continuity of the value
function established in Step 3 implies that we can assume that vk,i,j(µN ) 6= 0 for N large enough. In fact,
it is without loss of generality to assume that vk,i,j(µN ) > 0 for N large enough.

Let X∗(µ) denote the argmax of program (2.5) at µ. By Theorem 1—and using the fact that vk,i,j(µ) 6=
0—X∗(µ) has a finite number of elements. Assume then that the argmax has L elements and denote them
as x∗1(µ), x∗2(µ), . . . , x∗L(µ).

For each l ∈ {1, 2, . . . , L}, let r∗l (µ) denote the n × mzl matrix of all active restrictions at a solution
x∗l (µ). Likewise, let S∗l (µ) be the matrix of dimension n×msl that collects all slack restrictions at x∗l (µ).
Consequently, for each solution x∗l (µ) there are unique matrices r∗l (µ) and S∗l (µ) such that

r∗l (µ)′x∗l (µ) = 0mzl×1, S∗l (µ)′x∗l (µ) > 0msl×1.

Define
R∗(µ) ≡ {r∗1(µ), r∗2(µ), . . . , r∗l (µ)}.

Proof of differentiability: We establish the differentiability of the value function in two sub-steps.

Step 4: First, we show that

(A.6) max
r∗
l

(µ)∈R∗(µ)
{v̇k,i,j(µ, r∗l (µ))′h} ≤ lim inf

N→∞
tN (vk,i,j(µN )− vk,i,j(µ)).

Proof: Take any r∗l (µ) ∈ R∗(µ). By definition of r∗l (µ) all the columns of S(µ) that are not contained
in r∗l (µ) are slack (at µ). Consider then the candidate solution x∗+(µ, r∗l (µ)). This candidate solution is
continuous at µ (which follows from the formula in Lemma 1 and the fact that vk,i,j(µ, r∗l (µ)) = vk,i,j(µ) >
0). Therefore, for N large enough this candidate solution x∗+(µN , r∗l (µN )) is in the choice set of program
(2.5) at µN , which implies that

vk,i,j(µN , r∗l (µN )) ≤ vk,i,j(µN ).
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Hence, the inequality above implies that for any r∗l (µ) ∈ R∗(µ) we have that

tN (vk,i,j(µN , r∗l (µN ))− vk,i,j(µ, r∗l (µ))) ≤ tN (vk,i,j(µN )− vk,i,j(µ)).

Lemma 2 thus implies that for any r∗l (µ) ∈ R∗(µ),

v̇k,i,j(µ, r∗l (µ))′h ≤ lim inf
N→∞

tN (vk,i,j(µN )− vk,i,j(µ)),

which establishes equation (A.6).

Step 5: Now we show that

(A.7) lim sup
N→∞

tN (vk,i,j(µN )− vk,i,j(µ)) ≤ max
r∗
l

(µ)∈R∗(µ)
{v̇k,i,j(µ, r∗l (µ))′h}.

Proof: We prove the statement above by contradiction. So, suppose that (A.7) does not hold. Then, there
exists ε0 > 0 and a subsequence µNk such that for every r∗l (µ) ∈ R∗(µ),

(A.8) v̇k,i,j(µ, r∗l (µ))′h+ ε0 ≤ tN (vk,i,j(µNk )− vk,i,j(µ)).

We will show that assuming the existence of ε0 > 0 and a subsequence µNk will lead to a contradiction.

Additional Notation: Let x∗Nk be any element in the argmax of program (2.5) at µNk . Let r
∗
Nk

(µNk ) be
the matrix that collects all active restrictions at x∗Nk and let S∗Nk (µNk ) be the matrix that collects all of
the sign restrictions that are slack at x∗Nk ; i.e, S

∗
Nk

(µNk )′x∗Nk > 0. Let

R+(µ) ≡ {r ∈ R(µ) | vk,i,j(µ; r(µ)) > 0}.

Partition the set R+(µ) into the following four disjoint sets:

i) R∗(µ),

ii) The restrictions r(µ) ∈ R+(µ)/R∗(µ) for which x+(µ; r(µ)) belongs to X∗(µ),

iii) The restrictions r(µ) ∈ R+(µ) that do not fall in neither i) nor ii) and for which some sign restriction
not included in r(µ) is violated,

iv) The restrictions r(µ) ∈ R(µ) that do not fall in i), ii), iii) for which x+(µ, r(µ)) is feasible but
vk,i,j(µ, r(µ)) < vk,i,j(µ).

Proof of A.7): Note that the restrictions of Type i) cannot be satisfied by x∗Nk infinitely often. In other
words, there is no l = 1, . . . L such that

r∗Nk (µNk ) = r∗l (µNk ), and S∗Nk (µNk ) = S∗l (µNk )

for infinitely many values of k. If this were the case, there would be a further subsequence NKT for which
vk,i,j(µNKT ) = vk,i,j(µNKT , rl(µNKT )). Thus, equation (A.8) would contradict the differentiability of
vk,i,j(µ, rl(µ)).

Restrictions of Type iii) cannot be satisfied infinitely often by x∗Nk
. This follows from the fact that if

r∗Nk
(µNK ) were equal to some r(µNK ) for r(µ) of type iii) infinitely often, then we could always find some

large k for which x∗Nk is the form x+(µNk , r(µNK )). Such candidate solution will eventually violate a sign
restriction, contradicting the fact that x∗Nk is in fact a solution.

Restrictions of Type iv) cannot be satisfied infinitely often by x∗Nk . If this were the case, then we could
always find some large k for which
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v̇k,i,j(µ, r∗l (µ))′h+ ε0 ≤ tNk (vk,i,j(µNk )− vk,i,j(µ))

= tNk (vk,i,j(µNk , rl(µNk ))− vk,i,j(µ))

= tNk (vk,i,j(µNk , rl(µNk ))− vk,i,j(µ, rl(µ)))

+ tNk (vk,i,j(µNk , rl(µ))− vk,i,j(µ))
(where rl(·) is some set of restrictions of type iv)). But the fact that (vk,i,j(µNk ; rl(µ)) − vk,i,j(µ) < 0)
contradicts the definition of the subsequence µNk .

Finally, we show that if r is a restriction of Type ii) it cannot be the case that

r∗µNk
(µNp ) = r(µNp )

infinitely often. To establish this claim, suppose that there is a restriction r of Type ii) such that

r(µNp )′x∗(µNp ) = 0

infinitely often. This means we can construct a further subsequence µNpq for which (by Lemma 1)

vk,i,j(µNpq ) = vk,i,j(µNpq , r(µNpq )).

Therefore, by equation (A.8) we must have that for every r∗l (µ) ∈ R∗(µ),

v̇k,i,j(µ, r∗l (µ))′h+ ε0 ≤ tNpq (vk,i,j(µNpq , r(µNpq ))− vk,i,j(µ))

= tNpq (vk,i,j(µNpq , r(µNpq ))− vk,i,j(µ, r(µ)))

+ tNpq (vk,i,j(µ, r(µ))− vk,i,j(µ))

= tNpq (vk,i,j(µNpq , r(µNppq ))− vk,i,j(µ, r(µ))),

where the last line follows from the fact that r(µ) is of Type ii) and, hence, leads to a candidate solution
x+(µ; r(µ)) that equals x∗l (µ) for some l, which we will assume (without loss of generality) to be equal to 1.
The differentiability result in Lemma 2 implies that for every l = 1, . . . , L,

v̇k,i,j(µ; r∗l (µ))′h+ ε0 ≤ v̇k,i,j(µ, r(µ))′h.

We show that this last inequality leads to a contradiction as we must have

(A.9) v̇k,i,j(µ, r∗1(µ))′h = v̇k,i,j(µ; r(µ))′h.

To see this, note first that r∗1(µ) must contain all the columns of r(µ) as

r(µ)′x∗1(µ) = 0,

and, by definition, r∗1(µ) contains all the constraints that are active at x∗1(µ). Thus, we can write r∗1(µ) as

r∗1(µ) = [r(µ), r̃(µ)],

where r(µ) and r̃(µ) are linearly independent. Our formula for v̇k,i,j in Lemma 2 implies that (A.9) will
hold if the Lagrange multipliers corresponding to the constraints in r̃(µ) are zero. To see that this is indeed
the case, note that by the argument used in the proof of Lemma 2, the Karush-Kuhn-Tucker conditions for
the program that only imposes r(µ) as equality conditions (along with the ellipsoid constraint) imply that

C′k(A)ei = vk,i,j(µ; r(µ))Σ−1x+(µ; r(µ)) + r(µ)w1.



DELTA-METHOD INFERENCE 41

The analogous conditions for the program that imposes r∗1(µ) as constraints imply that

C′k(A)ei = vk,i,j(µ; r∗1(µ))Σ−1x+(µ; r∗1(µ)) + r∗1(µ)w∗1 .

Therefore—since by assumption x+(µ; r∗1(µ)) = x+(µ; r(µ))—it has to be the case that

r(µ)w1 − r∗1(µ)w∗1 = 0n×1.

Partitioning w∗1 = [w∗1,1
′, w∗′1,2]′ according to r(µ) = [r(µ), r̃(µ)], we have that

r(µ)(w1 − w∗1,1) + r̃(µ)w∗1,2 = 0n×1.

Assumption 2 implies that the latter equality holds if and only if w1 = w∗1,1 and w∗1,2 = 0. Therefore we
conclude that equation (A.9) must holds. This leads to a contradiction as ε0 > 0 and

v̇k,i,j(µ; r∗1(µ))′h+ ε0 ≤ v̇k,i,j(µ; r∗1(µ))′h.

Summary of Step 4: Step 4.1 showed that

max
r∗
l

(µ)∈R∗(µ)
{v̇k,i,j(µ; r∗l (µ))′h} ≤ lim inf

N→∞
tN (vk,i,j(µN )− vk,i,j(µ)).

Step 4.2 showed that

lim sup
N→∞

tN (vk,i,j(µN )− vk,i,j(µ)) ≤ max
r∗
l

(µ)∈R∗(µ)
{v̇k,i,j(µ, r∗l (µ))′h}.

We conclude that

lim
N→∞

tN (vk,i,j(µN )− vk,i,j(µ)) = max
r∗
l

(µ)∈R∗(µ)
{v̇k,i,j(µ, r∗l (µ))′h}.

A.5. Proof of Theorem 3 Part a)

Let P denote the data generating process. For notational simplicity we write µ instead of µ(P ) and Ω
instead of Ω(P ) whenever convenient. Note first that

(A.10) P

(
λ ∈
[
vk,i,j(µ̂T )− z1−α/2 σ̂k,i,j;T /

√
T , vk,i,j(µ̂T ) + z1−α/2 σ̂k,i,j;T /

√
T

])
is bounded from below by

P

(√
T (vk,i,j(µ̂T )− vk,i,j(µ)) ≤ z1−α/2 σ̂k,i,j;T and − z1−α/2σ̂k,i,j;T ≤

√
T (vk,i,j(µ̂T )− vk,i,j(µ))

)
,

which is itself bounded from below by

P

(√
T (vk,i,j(µ̂T )−vk,i,j(µ)) ≤ z1−α/2σ̂k,i,j;T and −z1−α/2σ̂k,i,j;T ≤

√
T (vk,i,j(µ̂T )−vk,i,j(µ)), and ||

√
T (µ̂T−µ)|| ≤Mε

)
,

where Mε is such that
P

(
||ζ(P )|| > Mε

)
≤ ε.

By Theorem 2, both vk,i,j(·) and vk,i,j(µ) are directionally differentiable function with directional derivatives
denoted by v̇k,i,j;µ(·), v̇k,i,j;µ(·). The directional differentiability implies that for any δ > 0 there is T large
enough such that for any h ∈ Rd such that ||h|| ≤Mε,

−δ ≤
√
T (vk,i,j(µ+ h/

√
T )− vk,i,j(µ))− v̇k,i,j;µ(h) ≤ δ

and
−δ ≤

√
T (vk,i,j(µ+ h/

√
T )− vk,i,j(µ))− v̇k,i,j;µ(h) ≤ δ.
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Therefore, for T large enough

inf
λ∈IR

k,i,j
(µ(P ))

P

(
λ ∈
[
vk,i,j(µ̂T )− z1−α/2 σ̂k,i,j;T /

√
T , vk,i,j(µ̂T ) + z1−α/2 σ̂k,i,j;T /

√
T

])
is bounded from below by

P

(
δ + v̇k,i,j;µ(

√
T (µ̂T − µ)) ≤ z1−α/2 σ̂k,i,j;T and

−z1−α/2σ̂k,i,j;T ≤ v̇k,i,j;µ(
√
T (µ̂T − µ))− δ, and ||

√
T (µ̂T − µ)|| ≤Mε

)
,

which, by Assumption 4 (and using the continuity of the directional derivative), converges in distribution to

P

(
δ + v̇k,i,j;µ(ζ(P )) ≤ z1−α/2 σ and

−z1−α/2σ ≤ v̇k,i,j;µ((ζ(P ))− δ, and ||ζ(P )|| ≤Mε

)
,

where σ is the probability limit of σ̂k,i,j;T ,

σ ≡ max
r∈R(µ)

[
v̇k,i,j(µ; r)′Ωv̇k,i,j(µ; r)

]
.

Consequently, for every δ > 0,

lim inf
T→∞

inf
λ∈IR

k,i,j
(µ(P ))

P

(
λ ∈
[
vk,i,j(µ̂T )− z1−α/2 σ̂k,i,j;T /

√
T , vk,i,j(µ̂T ) + z1−α/2 σ̂k,i,j;T /

√
T

])
is larger than or equal

1− P
(
v̇k,i,j;µ(ζ(P )) > z1−α/2 σ − δ

)
− P
(
v̇k,i,j;µ(ζ(P )) < −z1−α/2 σ + δ

)
−P
(
||ζ(P )|| > Mε

)
.

Take some x ∈ X∗(µ) for which σ(x) ≡ v̇k,i,j(µ; r(µ;x))′Ωv̇k,i,j(µ; r(µ;x)) > 0 (one such x must exist by
the assumption of this theorem). The fact that ζ(P ) is symmetric and using our formula for the directional
derivative of vk,i,j we have that

P

(
v̇k,i,j;µ(ζ(P )) > z1−α/2 σ − δ

)
≤ P

(
v̇k,i,j(µ; r(µ;x))′ζ(P ) > z1−α/2σ − δ

)
≤ P

(
N(0, 1) > z1−α/2

σ

σ(x)
−

δ

σ(x)

)
,

≤ P
(
N(0, 1) > z1−α/2 −

δ

σ(x)

)
,

for any δ > 0 (since σ ≥ σ(x)).

Now, take some x ∈ X∗(µ) for which σ(x) ≡ v̇k,i,j(µ; r(µ;x))′Ωv̇k,i,j(µ; r(µ;x)) > 0. Note that

P

(
v̇k,i,j;µ(ζ(P )) < −z1−α/2 + δ σ

)
≤ P

(
v̇k,i,j(µ; r(µ, x))′ζ(P ) < −z1−α/2σ + δ

)
≤ P

(
N(0, 1) < −z1−α/2

σ

σ(x)
+

δ

σ(x)

)
,

≤ P
(
N(0, 1) < −z1−α/2 +

δ

σ(x)

)
,

for any δ > 0 (since σ > σ(x)). We conclude that for any ε > 0 and δ > 0
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lim inf
T→∞

inf
λ∈IR

k,i,j
(µ(P ))

P

(
λ ∈
[
vk,i,j(µ̂T )− z1−α/2 σ̂k,i,j;T /

√
T , vk,i,j(µ̂T ) + z1−α/2 σ̂k,i,j;T /

√
T

])
is bounded from below by

Φ
(
z1−α/2 −

δ

σ(x)

)
− Φ

(
−z1−α/2 +

δ

σ(x)

)
− ε,

where Φ(·) is the standard normal c.d.f. Since ε > 0, δ > 0 are arbitrary and Φ(·) is continuous, the desired
result follows.

A.6. Proof of Theorem 3 Part b)

Proof: We would like to show that for every ε > 0, η > 0 there is T ∗(ε, η) such that for T ≥ T ∗(ε, η) we
have that

P (RBC(Y1, . . . , YT ) < 1− α− ε) < η.

We divide the proof into 5 steps.
Step 1 (Definitions of Mε,η , δε): Let ζ be a Nd(0,Ω(P )) random vector. For given ε > 0, η > 0 define

Mε,η ∈ R as the scalar such that
P(||ζ|| > Mε,η) < min{ε/3, η/4}.

Let Φ(·) denote the standard normal c.d.f. Define δε > 0 to be any scalar such that

|Φ(z1−α/2 − δε/σ(µ))− Φ(−z1−α/2 + δε/σ(µ))− (1− α)| < ε/3.

Such a scalar exists by the continuity of Φ(·) and the fact that σ(µ) and σ(µ) are positive.
Step 2 (Definitions of AT (ε), BT (ε), CT (ε)). Let

Y T ≡ (Y1, . . . , YT )

denote the data. In a slight abuse of notation, let σ̂T abbreviate σ̂k,i,j and let σ denote the probability limit
of σ̂T . Define the events:

AT (ε, η) ≡
{
Y T

∣∣∣ ||√T (µ̂T − µ)|| > Mε,η

}
,

BT (ε) ≡
{
Y T

∣∣∣ sup
B∈B(Rd)

|P ∗µ
(√

T (µ∗ − µ̂T ) ∈ B | Y T
)
− P (ζ ∈ B) | >

ε

3

}
,

CT (ε) ≡
{
Y T

∣∣∣ |σ̂ − σ| > δε

2z1−α/2

}
.

We will show that if the Robust Bayes Credibility of our delta-method interval falls below 1−α− ε then one
of the events above occurs a fortiori. We will then argue that our assumptions imply that the probability
of each of these events becomes arbitrarily small for large T (implying the event in which the Robust Bayes
Credibility is below 1− α− ε happens with an arbitrarily small probability).

Note that the CLT for µ̂T (Assumption 4) implies that for any ε > 0 and any η > 0

(A.11) P (AT (ε, η))→ P(||ζ|| > Mε,η).

The Bernstein von-Mises Theorem for µ∗ (Assumption 5) implies that for any ε > 0

(A.12) P (BT (ε))→ 0.
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Finally, the definition of probability limit implies that

(A.13) P (CT (ε))→ 0.

Therefore, for any ε > 0, η > 0 there exists T1(ε, η) such that for any T ≥ T1(ε, η)

(A.14) |P (AT (ε, η))− P (||ζ|| > Mε,η)| < η/4, |P (BT (ε))| < η/4, P (CT (ε)) < η/4.

Step 3 (First order approximations of the bounds of the identified set). Let µ denote the true parameter
and define Z∗T ≡

√
T (µ∗ − µ̂T ) and ZT ≡

√
T (µ̂T − µ). Let v(·) abbreviate vk,i,j(·) and, likewise, let v(·)

abbreviate vk,i,j(·). Note that
√
T (v(µ∗)− v(µ̂T )) =

√
T (v(µ+ Z∗T /

√
T + ZT /

√
T )− v(µ))−

√
T (v(µ+ ZT /

√
T )− v(µ)).

The differentiability of v(·) at µ (which follows from Theorem 2 and the fact that X∗(µ) is a singleton)
implies that whenever ||Z∗T || ≤Mε and ||ZT || ≤Mε there is T2(ε, η) such that for T ≥ T2(ε, η),

|
√
T (v(µ∗)− v(µ̂T ))− v̇µ(Z∗T + ZT )− v̇µ(ZT )| = |

√
T (v(µ∗)− v(µ̂T ))− v̇µ(Z∗T )| < δε/2.

Analogously, we can find T3(ε, η) such that for T ≥ T3(ε, η) we have

|
√
T (v(µ∗)− v(µ̂T ))− v̇µ(Z∗T )| < δε/2.

Step 4 (Lower bound on the Robust Bayesian Credibility of a set). Define the posterior probability that
the bounds of the identified set are contained in our delta-method interval as

c(Y T ) ≡ P ∗µ
(

[v(µ∗), v(µ∗)] ⊆
[
v(µ̂T )− z1−α/2 σ̂/

√
T , v(µ̂T ) + z1−α/2 σ̂/

√
T

]
|Y T
)
.

Note that for every data realization
c(Y T ) ≤ RBC(Y T ),

which follows from the fact that for any (A,B) we have that λ(A,B) ∈ [v(µ), v(µ)]. Therefore for any ε > 0

(A.15) P (RBC(Y T ) < 1− α− ε) ≤ P (c(Y T ) < 1− α− ε)

Thus, to establish Theorem 4 it suffices to show that for any ε > 0

lim
T→∞

P (c(Y T ) < 1− α− ε) = 0.

We establish such a result in the following step.
Step 5: We now show that for any ε > 0, η > 0 there is T large enough such that

P (c(Y T ) < 1− α− ε) ≤ P (AT (ε, η) ∪BT (ε) ∪ CT (ε)),

or equivalently, that
P (AcT (ε) ∩BcT (ε) ∩ CcT (ε)) ≤ P (c(Y T ) ≥ 1− α− ε)

for T large enough. We start by re-writing c(Y T ) as

P ∗µ

(
− z1−α/2σ̂ ≤

√
T (v(µ∗)− v(µ̂T )), and

√
T (v(µ∗)− v(µ̂T )) ≤ z1−α/2σ̂|Y T

)
,

and noting that

(A.16) c(Y T ) ≥

P ∗µ

(
−z1−α/2σ̂ ≤

√
T (v(µ∗)−v(µ̂T )), and

√
T (v(µ∗)−v(µ̂T )) ≤ z1−α/2σ̂, and ||

√
T (µ∗−µ̂T )|| ≤Mε,η |Y T

)
.
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Take T ∗(ε, η) = max{T1(ε, η), T2(ε, η), T3(ε, η)}. From Equation (A.16) and Step 2 it follows that

Y T ∈ AcT (ε, η) =⇒

(A.17) c(Y T ) ≥ P ∗µ
(
−z1−α/2σ̂ ≤ v̇µ(Z∗T )−δε/2, and v̇µ(Z∗T )+δε/2 ≤ z1−α/2σ̂, and ||Z∗T || ≤Mε,η |Y T

)
for T ≥ T ∗. In addition,

Y T ∈ CcT (ε)

implies that the right-hand side of equation (A.17) is larger than or equal

P ∗µ

(
− z1−α/2σ ≤ v̇µ(Z∗T )− δε, and v̇µ(Z∗T ) + δε ≤ z1−α/2σ̂, and ||Z∗T || ≤Mε,η |Y T

)
.

This means that for T ≥ T ∗(ε, η)
Y T ∈ AcT (ε) ∩ CcT (ε) =⇒

(A.18) c(Y T ) ≥ P ∗µ
(
− z1−α/2σ ≤ v̇µ(Z∗T )− δε, and v̇µ(Z∗T ) + δε ≤ z1−α/2σ̂, and ||Z∗T || ≤Mε,η |Y T

)
.

Define the set

B =
{
z ∈ Rd

∣∣∣ − z1−α/2σ ≤ v̇µ(z)− δε, and v̇µ(z) + δε ≤ z1−α/2σ, and ||z|| ≤Mε,η

}
.

By definition, v̇µ(·) and v̇µ(·) are linear and thus measurable functions. This means that B is a Borel Set
(as it is the inverse image of a Borel subset on the real line under a measurable function). Consequently,

Y T ∈ AcT (ε, η) ∩BcT (ε) ∩ CcT (ε)

implies that
C(Y T ) ≥ P

(
− z1−α/2σ ≤ v̇µ(ζ)− δε, and v̇µ(ζ) + δε ≤ z1−α/2σ, and ||ζ|| ≤Mε,η

)
− ε/3

= P
(
− v̇µ(ζ) ≤ z1−α/2σ − δε, and − z1−α/2σ + δε ≤ −v̇µ(ζ), and ||ζ|| ≤Mε,η

)
− ε/3.

Note further that because the distribution of ζ is the same as that of −ζ and because v̇µ(·), v̇µ(·) are linear
functions (by definition of derivative) we have that

C(Y T ) ≥ P
(
v̇µ(ζ) ≤ z1−α/2σ − δε, and − z1−α/2σ + δε ≤ v̇µ(ζ), and ||ζ|| ≤Mε

)
− ε/3

≥ 1− P
(
v̇µ(ζ) > z1−α/2σ − δε

)
− P
(
− z1−α/2σ + δε > v̇µ(ζ)

)
− 2ε/3

= 1− P
(
N(0, 1) > z1−α/2

σ

σ(µ)
−

δε

σ(µ)

)
− P
(
− z1−α/2

σ

σ(µ)
+

δε

σ(µ)
> N(0, 1)

)
− 2ε/3

≥ 1− P
(
N(0, 1) > z1−α/2 −

δε

σ(µ)

)
− P
(
− z1−α/2 +

δε

σ(µ)
> N(0, 1)

)
− 2ε/3

≥ Φ
(
z1−α/2 −

δε

σ(µ)

)
− Φ
(
− z1−α/2 +

δε

σ(µ)

)
− 2ε/3

≥ 1− α− ε.

Thus, we have shown that if T ≥ T ∗(ε, η), then

Y T ∈ AcT (ε, η) ∩BcT (ε) ∩ CcT (ε) =⇒ c(Y T ) ≥ 1− α− ε.

This means that if T ≥ T ∗(ε, η), then
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P

(
c(Y T ) < 1− α− ε

)
≤ P (AT (ε, η)) + P (BT (ε)) + P (CT (ε))

≤ |P (AT (ε))− P(||ζ|| > Mε,η)|+ P(||ζ|| > Mε,η)

+ P (BT (ε)) + P (CT (ε))

≤ 4(η/4) (by equation (A.14)) .
Therefore, for any ε > 0, η > 0 there is T ∗(ε, η) such that

P (RBC(Y T ) < 1− α− ε) ≤ P (c(Y T ) < 1− α− ε) < η.

A.7. Implementation details

A.7.1. Bonferroni confidence set

This section describes the implementation of the Bonferroni-type method proposed by Granziera et al.
(2017). The following algorithm is a variation of the algorithm outlined on p.17 in Granziera et al. (2017).
There is one minor difference between the algorithms. To avoid dealing with degenerate D̂, we add Step 3.c
instead of implicitly adjusting the criterion function as proposed in Section 4.2 of Granziera et al. (2017). The
rate of the sequence σT guaranties that the additional noise σT εb does not affect the asymptotic distribution
of G (ξg).

1. Generate NB draws
{
µ∗b

}NB
b=1
∼ N

(
µ̂T , Ω̂T

)
.

2. Generate NG grid points {xg}
Ng
g=1 on a unit d−sphere distributed uniformly using the algorithm from

Uhlig (2005).

3. For every grid point xg , we implement the following statistical test (of size 1 − α/2) of whether
B1g = Σ̂1/2

T xg satisfies all identification restrictions. This is done by following steps a) to g) below.

(a) Compute estimated residuals21,

ξg =
(
S′ (µ̂T ) , Z′ (µ̂T )

)′
B1g .

(b) Compute re-centered bootstrap residuals
{
ξ∗g;b

}NB
b=1

,

ξ̃?g;b =
(
S′
(
µ∗b
)
, Z′
(
µ∗b
))′

Σ∗b
1/2xg − ξg .

(c) Add independent normally distributed noise with εb ∼ N (0, I) and σT = 10−6/
√
T ln (lnT ),

ξ∗g;b = ξ̃?g;b + σT εb.

(d) Compute standard errors for
{
ξ∗g;b

}NB
b=1

. The diagonal matrix D̂1/2 has the corresponding
standard errors on the diagonal.

(e) Select binding inequities as inequalities corresponding to the components ` of ξg such that

e′`D̂
−1/2ξg ≤ κT = 1.96 ln (lnT ) .

(f) Compute the criterion function G (ξg) and
{
G
(
ξ∗g;b

)}NB
b=1

which includes only the equalities

21We only compute matrices (S′ (µ̂T ) , Z′ (µ̂T ))′
√

Σ̂T and
(
S′
(
µ∗b

)
, Z′
(
µ∗b

))′√
Σ∗
b
once to speed up

the costly matrix multiplication.
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and the binding inequalities, where

G
(
ξ∗g;b
)

=
mz∑
`=1

(
e′`D̂

−1/2ξ∗g;b
)2

+
ms+ms∑
`=mz+1

(
e′`D̂

−1/2ξ∗g;b
)2

1
{
e′`D̂

−1/2ξg ≤ κT
}

(A.19)

(g) Grid point xg passes the test if G (ξg) is less that 1− α/2 sample quantile of
{
G
(
ξ∗g;b

)}NB
b=1

.

4. If xg passes the test in Step 3, compute λ(g)
k,i,j

and λ̄
(g)
k,i,j

as α/4 and 1 − α/4 sample quantiles of{
e′iCk

(
A∗b

)√
Σ∗
b
xg
}NB
b=1

correspondingly. Otherwise set λ(g)
k,i,j

= +∞ and λ̄(g)
k,i,j

= −∞.

5. Report

CSGSMT (1− α) =
[

min
g=1,NG

λ
(g)
k,i,j

, max
g=1,NG

λ̄
(g)
k,i,j

]
.

Our implementation corresponds to a generalized version of the criterion function considered in Section 6
of Granziera et al. (2017). This generalized criterion function can potentially be applied to a combination
of zero and sign restrictions. In our baseline empirical application, however, the acceptance rate of Step 3
is so low that we could not find a single point out of 10000 grid points that would pass the test. For this
reason, we report the results for the alternative identification scheme with the zero restriction on the FFR
being replaced by a negative sign restriction.

The number of grid points that pass Step 4 of the algorithm depends crucially on the number of the
identifying restrictions imposed. In our experiment, every additional sign restriction reduces the acceptance
rate almost by half and, correspondingly, requires twice more grid points and computational time to achieve
the same level of accuracy. For the UMP example with 4 sign restrictions the acceptance rate is 9.1%.

A.7.2. Joint Confidence Sets

To implement Inoue and Kilian (2013)’s algorithm, we first sample 10,000 joint draws from the posterior
of reduced-form parameters and structural coefficients that satisfy all identification restriction. We use those
draws to compute 10,000 structural impulse response function. Second, we sample 20,000 draws of reduced-
form parameters to compute the marginal posterior density for each structural response. Third, we compute
a joint 68% credible set by keeping all of structural responses which have marginal density higher than the
lowest 32%. The second step is computationally costly. In our implementation it takes 2.5 hours when using
50 parallel workers in Matlab.
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Figure 10: The mathematical program defining vk,i,j(µ) (n = 3) with one zero restriction.

Figure 10 provides a graphical representation of the mathematical program (2.5), where BB′ = Σ has been
replaced by the ‘ellipsoid’ constraint x′Σ−1x = 1, x ≡ Bj ∈ R3. The objective function corresponds to the
hyperplane with the normal vector Ck(A)′ei ∈ R3. In this example, there is only one equality restriction
with the normal vector given by the solid line. This restriction requires the contemporaneous impact of the
j-th shock on the third variable to be zero. Note that without the equality restriction the maximizer and
minimizer will be given by the point at which the hyperplane is tangent to the ellipsoid.
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Figure 11: Solving for vk,i,j(µ) (n = 3, Σ = I3) with one equality restriction.

Figure 11 provides a graphical representation of the solution to the mathematical program (2.5) when Σ = I3
and there is only one zero restriction. The solution to the program must lie in the orthogonal complement
of Z (the thin solid line). In this picture, the orthogonal complement corresponds to the space spanned
by the thick solid lines. This implies that the rotated solution, denoted x̃ ≡ Σ−1/2x, must be of the form
MΣ1/2Zy for some y ∈ R3. Hence, the only relevant part of x′Σ−1x = 1 becomes the projected version
of it: y′MΣ1/2y = 1, represented by the ellipsoid. One can find the value of this problem by projecting
the gradient of the objective function on the orthogonal complement of Σ1/2z (the arrow) and selecting a
direction in the ellipsoid collinear to it. The value function vk,ij(µ) will be given by the norm of the arrow.

Suppose there are only equality constraints. Note that Z′Bj = 0m×1 implies that the re-parameterized
choice variable x̃ ≡ Σ−1/2Bj must lie on the orthogonal space of Σ1/2Z. That is, the selected value of x̃
should be of the form

x̃ = MΣ1/2Zy, MΣ1/2Z ≡
(
In − Σ1/2Z(Z′ΣZ)−1Z′Σ1/2

)
, y ∈ Rn.

The quadratic equality constraint also restricts the choice variable x̃ to satisfy x̃′x̃ = 1. Consequently, the
problem can be re-written as

max
y∈Rn

e′iCkΣ1/2MΣ1/2Zy s.t. y′MΣ1/2Zy = 1.

An application of the Cauchy-Schwartz inequality shows that the positive value in (A.1) gives the maximum
response in (2.5).
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