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We study vector autoregressions that impose equality and/or inequality restrictions to set-identify the
dynamic responses to a single structural shock. We make three contributions. First, we present an
algorithm to compute the largest and smallest value that an impulse-response coefficient can attain
over its identified set. Second, we provide conditions under which these largest and smallest values are
directionally differentiable functions of the model’s reduced-form parameters. Third, we propose a delta-
method approach to conduct inference about the structural impulse-response coefficients. We use our
results to assess the effects of the announcement of the Quantitative Easing program in August 2010.
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1. Introduction

An increasingly popular practice in empirical macroeconomics
is to set-identify the parameters of a structural vector autoregres-
sion [SVAR] by means of exclusion and/or sign restrictions. Most
studies working with this type of models have relied on Bayesian
methods to construct posterior credible sets for the structural
parameters of interest (for example, Inoue and Kilian, 2013; Arias
et al., 2017; Baumeister and Hamilton 2015).

A practical concern with Bayesian analysis in set-identified
SVARs is that posterior inference continues to be influenced by
prior beliefs even if the sample size is infinite (Poirier, 1998;
Gustafson, 2009; Moon and Schorfheide, 2012). This observation
has motivated the study of alternative approaches to inference
that dispense with the specification of a prior distribution over
structural parameters that are only set-identified.

There are two existing proposals that characterize the esti-
mation uncertainty of set-identified structural responses, without
postulating a specific prior for the parameters of the structural
model. On the one hand, Granziera et al. (2017) [GMS17] have
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proposed a frequentist confidence interval for structural impulse-
response coefficients based on a moment-inequality-minimum-
distance framework. On the other hand, Giacomini and Kitagawa
(2015) [GK15] have proposed a robust Bayes credible interval that
achieves a given credibility level regardless of the prior specified
over the model’s set-identified structural parameters.

We contribute to the analysis of set-identified SVARs by propos-
ing a novel delta-method interval for the coefficients of the
impulse-response function [IRF]. We show that our delta-method
interval is point-wise consistent in level and, under certain regularity
conditions, has asymptotic robust Bayesian credibility of at least the
nominal level. Thus, our inference approach can be interpreted
both from a frequentist and a robust Bayes perspective. We also
argue that the computational cost of our procedure compares
favorably with GMS17 and GK15.

Broadly speaking, our approach is based on a closed-form char-
acterization of the endpoints of the identified set and their di-
rectional derivatives. Our delta-method interval – which may be
viewed as a generalization of the pioneering work of Lütkepohl
(1990) on delta-method inference for point-identified VARs – takes
the form of a plug-in estimator for the identified set plus/minus
standard errors.

The main limitation of our approach is that the delta-method
interval is only defined for SVAR models that impose equality and
inequality restrictions on a single structural shock (e.g., amonetary
policy shock). Admittedly, this is problematic, as some popular ap-
plications of set-identified SVARs feature restrictions on multiple
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structural innovations.1 In spite of this observation, single-shock
set-identified models have been applied in several empirical stud-
ies: for example, to study the effects of monetary policy on output
(Uhlig, 2005), the impact ofmonetary policy on the housingmarket
(Vargas-Silva, 2008), the effects of labor market shocks on worker
flows (Fujita, 2011), the effects of exchange rates on aggregate
prices (An and Wang, 2012), and the effect of optimism shocks on
business cycles fluctuations (Beaudry et al., 2011). Thus, we think
there is room for our results to have an impact on empirical work.

To illustrate the usefulness of our main results, we estimate
a monetary structural vector autoregression using monthly U.S.
data from July 1979 to December 2007 (a sample that deliberately
ends a half-year before the financial crisis begins). The goal of our
exercise is to use pre-crisis data to learn about the responses of
macroeconomic variables to shocks that have effects similar to
the ‘unconventional’ monetary policy interventions implemented
after the crisis.

We set-identify an unconventional monetary policy [UMP]
shock as an innovation that decreases the two-year government
bond rate upon impact, but has no effect over the nominal federal
funds rate.2 We consider two additional sign restrictions on the
contemporaneous responses of inflation and output. Namely, we
assume that – upon impact – neither inflation nor output can
respond negatively to a UMP shock. Since the model is only set-
identified, our analysis effectively captures the effects of any his-
torical economic shock that affected the economy in the sameway
as an UMP shock.

We apply our delta-method approach to construct a confidence
interval for the dynamic responses of industrial production, infla-
tion, the two-year government bond rate, and the nominal federal
funds rate. We use our delta-method intervals to assess the effects
of the announcement of the second part of the so-called Quanti-
tative Easing program (QE2) in August 2010. Pre-crisis data turns
out to be extremely useful to learn about the post-crisis response
of macroeconomic aggregates to unconventional monetary policy.

The remainder of the paper is organized as follows. Section 2
presents an overview of the main methodological results in this
paper. Section 3 introduces our empirical application, which is
used as a running example throughout the paper. Section 4.1
presents our algorithm to evaluate the endpoints of the identified
set. Section 4.2 establishes the differentiability properties of the
endpoints. Section 4.3 presents our delta-method approach and
establishes its asymptotic frequentist validity as well as its asymp-
totic robust Bayesian credibility. Section 5 presents the delta-
method intervals for the dynamic responses to the QE2 program.
Section 6 concludes. All of our proofs are collected in Appendix A.
Additional figures and implementation details of different proce-
dures are collected in Appendix B.

Generic Notation: If A is a matrix, Aij denotes the ijth element
of A, vec(A) denotes the vectorization of A, and vech(A) denotes
half-vectorization (applicable only if A is symmetric). The Kro-
necker product between matrices A and B is denoted by A⊗ B. The
vector emi ∈ Rm denotes the ith column of the identity matrix –
denoted Im – of dimension m. If B is a matrix of dimension n × n,
Bi ≡ Beni denotes its ith column. If the dimension of eni is obvious,
we ignore the superscript n.

1 SVAR applications for the oil market set-identify both demand and supply
shocks using sign restrictions and elasticity bounds (Kilian and Murphy, 2012).
The same is true for recent labor market applications Baumeister and Hamilton
(2015). Also Mountford and Uhlig (2009) – one of the most cited applications of
set-identified SVARs – use sign restrictions to identify a government revenue shock
as well as a government spending shock, while controlling for a generic business
cycle shock and a monetary policy shock.
2 The paper focuses on the two-year rate as this variable changed considerably

after the announcement of the second round of the Quantitative Easing program.
See Krishnamurthy and Vissing-Jorgensen (2011).

2. Model, set-identifying restrictions, and overview of main
theoretical results

This section presents the baseline SVAR model, discusses the
class of set-identifying restrictions that we consider, and provides
an overview of our main methodological results.

2.1. SVAR model and impulse-response coefficients

We study the n-dimensional structural vector autoregression
(SVAR) with p lags; i.i.d. structural shocks distributed according to
F ; and unknown n × n structural matrix B:

Yt = A1Yt−1 + · · · + ApYt−p + Bεt ,
EF [εt ] = 0n×1, EF [εtε

′

t ] ≡ In. (2.1)

The object of interest is the kth period ahead structural impulse
response function of variable i to a particular shock j (e.g., a mone-
tary policy shock):

λk,i,j(A, B) ≡ e′

iCk(A)Bj, (2.2)

where Bj ≡ Bej and ei and ej denote the ith and jth column of In.3
We refer to the parameter in (2.2) as the (k, i, j)-coefficient of the
structural impulse-response function.

An auxiliary object in the estimation of (2.2) is the vector of
reduced-form VAR parameters:

µ ≡ (vec(A)′, vec(Σ)′)′ ∈ M ⊆ Rd, A ≡ (A1, A2, . . . , Ap),
Σ ≡ BB′. (2.3)

The reduced-form parameter space is denoted as M. The pa-
rameter A denotes the autoregressive coefficients of the VAR
model, while Σ denotes the covariance matrix of residuals. These
parameters can be estimated directly from the data bymultivariate
Least-Squares (LS). Our main high-level assumption will be the
approximate normality of the distribution of the LS estimator of µ.
This condition will be satisfied even in the presence of unit roots
and possible cointegration of unknown form (see Sims et al., 1990;
Toda andYamamoto, 1995;Dolado and Lütkepohl, 1996; Inoue and
Kilian 2002), and Proposition 7.1 in Lütkepohl (2007)). Our main
assumption is less demanding than the asymptotic normality of
the reduced-form impulse-responses in GMS17 (see Kilian (1998);
Benkwitz et al. (2000)).4

2.2. Set-identifying restrictions

A common practice in empirical macroeconomics is to use
equality and inequality restrictions to set-identify the structural
IRFs in (2.2). An example of an equality restriction in a monetary
VAR is that prices do not react contemporaneously to monetary
policy shocks. An example of an inequality restriction is that a
contractionary monetary policy shock cannot increase prices.

Let R(µ) ⊆ Rn be the set of values of Bj that satisfy the
inequality and equality restrictions. In our paper, the set R(µ)
takes the form

R(µ) ≡

{
Bj ∈ Rn

⏐⏐⏐ Z(µ)′Bj = 0mz×1 and S(µ)′Bj ≥ 0ms×1

}
, (2.4)

where Z(µ) is a matrix of dimension n×mz and S(µ) is a matrix of
dimension n×ms. Thematrix Z(µ) collects the equality restrictions

3 The transformation Ck(A) that appears in Eq. (2.2) is defined recursively by the
formula C0 ≡ In:

Ck(A) ≡

k∑
m=1

Ck−m(A) Am, k ∈ N,

Am = 0 ifm > p; see Lütkepohl (1990), p. 116.
4 Wewould like to thank an anonymous referee for suggesting this clarification.
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specified by the researcher (we assume that there aremz of them).
The matrix S(µ) collects the inequality restrictions (we assume
that there arems of them).

The simple formulation in (2.4) allows the researcher to incor-
porate the following identifying restrictions:

(a) Sign restrictions on the responses of variable i at horizon k
to an impulse on the jth shock:

e′

iCk(A)Bj ≥ or = 0,

as in Uhlig (2005).
(b) Long-run restrictions on the response of variable i to an

impulse on the jth shock:

e′

i(In − A1 − · · · − Ap)−1Bj ≥ or = 0,

as in Blanchard and Quah (1989).
(c) Short-run restrictions on the coefficients of the jth structural

equation. For example, the contemporaneous coefficient of
the ith variable in the jth structural equation:

e′

i(B
′)−1ej = e′

iΣ
−1Bj ≥ or = 0,

as in Rubio-Ramirez et al. (2015).
(d) Elasticity bounds as in Kilian andMurphy (2012); for exam-

ple, for some b ∈ R:

e′

iBj/e′

i′Bj ≥ b ⇐⇒ (ei − bei′ )′Bj ≥ 0,

provided e′

i′Bj > 0.

Sign-Normalization: In order to make sure that the impulse
response of interest is with respect to a fixed-sign shock one
should always impose a sign-normalization. Our framework allows
at least two different ways of imposing such a normalization:
(i) restricting the sign of the direct effect of the jth variable on
the jth equation, or (ii) restricting the sign of an arbitrary IRF
coefficient. The first type of sign normalization is covered in (c) as
the short-run restriction e′

jB
−1ej ≥ 0, while the second is covered

in (a) as a typical sign restriction on the IRFs.

2.3. Overview of the main results

The main results in this paper concern the ‘endpoints’ of the
identified set for a given structural impulse-response coefficient,
λk,i,j. These endpoints (which we sometimes refer to as the maxi-
mum and minimum response) are defined as follows:

Definition 1. Given a vector of reduced-form parameters µ we
define the endpoints of the identified set for λk,i,j as the functions:

vk,i,j(µ) ≡ sup
B∈Rn×n

e′

iCk(A)Bej, s.t. BB′
= Σ and Bej ∈ R(µ), (2.5)

and

vk,i,j(µ) ≡ inf
B∈Rn×n

e′

iCk(A)Bej, s.t. BB′
= Σ and Bej ∈ R(µ). (2.6)

The functions vk,i,j(µ), vk,i,j(µ) correspond to the largest and small-
est value of the structural parameter over its identified set.

Our delta-method approach is supported by the three results
described in the abstract, which can be summarized as follows:

• Theorem 1 (Algorithm to Evaluate the Maximum and Minimum
Response): We present an algorithm that allows a researcher to
evaluate the endpoints of the identified set given a vector of
reduced-form parameters. The algorithm – inspired by the ear-
lier work of Faust (1998) – evaluates all different collections
of ‘active’ constraints and selects those that generate the largest

(or smallest) value function—after checking that the inequal-
ity constraints not included in the set of active constraints are
satisfied.5

Our algorithm does not require sampling from the space of
structural matrices B. Instead, we show that vk,i,j(µ) and vk,i,j(µ)
are the value functions of a mathematical program whose Karush–
Kuhn–Tucker points can be described analytically—up to a set of
active inequality constraints. More concretely, Lemma 1 shows
that the maximum response for λk,i,j is equal to either plus or
minus the function

vk,i,j(µ; r) ≡

(
e′

iCk(A)Σ1/2MΣ1/2rΣ
1/2Ck(A)′ei

)1/2
,

where

MΣ1/2r ≡ In − Σ1/2r(r ′Σr)−1r ′Σ1/2,

and r is amatrix collecting the gradient vectors of the constraints in
R(µ) that are active at a maximum. Evaluating the function above
for different values of r and checking the feasibility of the corre-
sponding solution yields the maximum response. The minimum
response is obtained analogously.

• Theorem 2 (Directional Differentiability of the Endpoints): We
show that the functions vk,i,j(·) and vk,i,j(·) are directionally differ-
entiable. More precisely, let X∗(µ) denote the set of maximizers
of program (2.5). Consider a sequence of ‘perturbations’ of µ each
of them in a ‘direction’ hN ∈ Rd. We show that for any sequence
hN ∈ Rd such that hN → h ∈ Rd, and any sequence tN → ∞:

tN
(
vk,i,j(µ + hN/tN ) − vk,i,j(µ)

)
→ max

x∈X∗(µ)

[
v̇k,i,j(µ; r(µ; x))′h

]
,

where r(µ; x) collects the gradient of the constraints that are
active at a point x and v̇k,i,j(·; r)′ is a gradient of vk,i,j(·; r). The
proof of the result above builds on Lemma 2 which establishes
the differentiability of the function vk,i,j for a fixed set of active
constraints. We relate the expression of the directional derivative
with the generalized versions of the envelope theorems in thework
of Fiacco and Ishizuka (1990) and Bonnans and Shapiro (2000).We
argue that directional differentiability of the value functions (as
opposed to full differentiability) arises due to the possibility that
different structural models lead to the maximum (or minimum)
response.

• Theorem3 (Large-sample Properties):We establish the point-wise
consistency in level and the asymptotic robust Bayes credibility of
our delta-method interval. Our suggested interval takes the form

CST (1 − α; λk,i,j) ≡

[
vk,i,j(µ̂T ) − z1−α/2 σ̂(k,i,j),T/

√
T ,

vk,i,j(µ̂T ) + z1−α/2 σ̂(k,i,j),T/
√
T
]
,

where µ̂T is the typical LS estimator for the VAR reduced-form
parameters, z1−α/2 is the (1 − α/2) quantile of a standard normal,
and σ̂(k,i,j),T is our formula for the standard errors based on the
directional derivatives.

3. Running example: unconventional monetary policy shocks

This section introduces our empirical application, which will
be used as a running example to illustrate our assumptions and
results.

We consider a simple 4-variable model that includes the Con-
sumer Price Index (CPIt ), the Industrial Production Index (IPt ), the

5 Given a point x, we refer to any collection of binding restrictions definingR(µ)
as active constraints at x. The term ‘active constraints’ or ‘active set of constraints’
is the common terminology used in numerical optimization; see p. 308 in Nocedal
and Wright (2006).
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Table 1
Set-identification of an unconventional monetary policy shock: Restrictions.

Series Acronym UMP Notation

Consumer Price Index CPI + e′

1B1 ≥ 0
Industrial Production IP + e′

2B1 ≥ 0
2-year Treasury Bond rate 2yTB − e′

3B1 ≤ 0
Fed Funds Rate FF 0 e′

4B1 = 0

Description: Restrictions on contemporaneous responses to a UMP shock. ‘0’ stands
for a zero restriction, ‘−’ stands for a negative sign restriction and ‘+’ for positive
sign restriction.

2-year Treasury Bond rate (2yTBt ), and the Federal Funds rate
(FFt ).6 We take a logarithmic transformation of CPIt , IPt and then
work with first differences for all variables. Thus, our vector of
macro variables is

Yt ≡ (ln CPIt − ln CPIt−1, ln IPt − ln IPt−1,

2yTBt − 2yTBt−1, FFt − FFt−1)
′.

We set the number of lags equal to p = 12 following Gertler
and Karadi (2015). The time span of themonthly series is July 1979
to August 2008 (T = 342). To keep our exposition as simple as
possible, we ignore potential co-integration issues between short-
term and long-term interest rates. Without loss of generality, we
assume that the column of B corresponding to an UMP shock is
the first column; B1 ≡ Be1. Our equality/inequality restrictions are
summarized in Table 1. These sign restrictions can be justified by
the DSGE model calibrated in the work of Bhattarai et al. (2015).

Baumeister and Benati (2013) study a related identification
scheme. They consider a Bayesian SVAR to study an analogous
‘spread’ monetary policy shock that leaves the short-term nomi-
nal rate unchanged, but affects the spread between the ten-year
Treasury-bond yield and the policy rate.

Outline for the rest of our paper:Wehave already presented
an overview of our main results and described our running exam-
ple. In the remaining part of the paper, we formalize Theorems 1–
3 and use them to conduct inference about the responses to an
unconventional monetary policy shock.

4. Theorems

4.1. Theorem 1

In this sectionwe consider the problemof finding themaximum
response to an impulse in the jth structural shock subject to mz
equality (‘zero’) restrictions and ms inequality (‘sign’) restrictions.
The focus on the maximum and the minimum is an intermediate
step to conduct inference about the coefficients of the impulse-
response function.

4.1.1. Assumptions
We make two assumptions on the sign and zero restrictions

allowed in the model:

Assumption 1. The choice set in program (2.5) is not empty at µ.

This assumption simply requires that the identifying restric-
tions do not contradict each other.

Now, let ems
1 , ems

2 , . . . , ems
ms denote the ms different columns of

the identity matrix Ims . Let e(k) denote anms × kmatrix formed by
collecting any of the k ≤ ms columns of Ims .

6 All these variables are sourced from the data set of Gertler and Karadi (2015).
We thank Peter Karadi for making their data set available to us.

Definition 2. We say that Z(µ) and S(µ) are linearly independent
at µ if for any k ∈ Z, 0 ≤ k ≤ ms and any e(k) the matrix

R(µ; e(k)) ≡ [Z(µ), S(µ)e(k)] ∈ Rn×(mz+k)

has full rank.

Assumption 2. Z(µ) and S(µ) are linearly independent at µ.

This assumption has two important implications. The first im-
plication is that atmost n−1 constraints can be active at a solution
of program (2.5) (in particular, it implies mz ≤ n − 1). The second
implication is that it will allow us to characterize the maximum
and minimum response in terms of Karush–Kuhn–Tucker condi-
tions.Weverify (anddiscuss) this assumption for theUMPexample
in Section 4.1.3.

4.1.2. Algorithm
We now show that the value function vk,i,j(µ) in (2.5) can be

obtained by applying a simple algorithm. Let r be the matrix that
collects all the columns of Z(µ) and whatever columns of S(µ) that
are active at a solution of program (2.5). Our first observation is
that the value function vk,i,j(µ) equals plus or minus

vk,i,j(µ; r) =

(
e′

iCk(A)Σ1/2MΣ1/2rΣ
1/2Ck(A)′ei

)1/2
,

and the corresponding maximizer equals either

x∗

+
(µ; r) ≡ Σ1/2

(
MΣ1/2r

)
Σ1/2Ck(A)′ei

/
vk,i,j(µ; r)

or

x∗

−
(µ; r) ≡ −Σ1/2

(
MΣ1/2r

)
Σ1/2Ck(A)′ei

/
vk,i,j(µ; r),

where MΣ1/2r ≡ In − Σ1/2r(r ′Σr)−1r ′Σ1/2.
This result is shown formally in Lemma 1 in Appendix A.1

(where we also provide intuition). The lemma implies that if we
knew the program’s binding constraints, the value function could
be computed directly – up to its sign – as vk,i,j(µ, r). Moreover, the
sign of value function is positive if x∗

+
(µ; r) satisfies the inequality

restrictions that are not included in r , and negative otherwise.
Let R denote the set of all possible matrices r that could arise

from collecting all of the mz columns of the matrix Z(µ) and k out
of the ms columns of the matrix S(µ), where 0 ≤ k ≤ n − mz − 1.
Take any c larger than

c̄ ≡ max
i,k

(
e′

iCk(A)ΣCk(A)′ei
)1/2

.

The parameter c will be used to ‘penalize’ candidate solutions that
do not satisfy the inequality restrictions in S(µ).7 The penalization
works as follows. Consider first the case in which vk,i,j(µ; r) ̸= 0.
Since x∗

+
(µ; r) and x∗

−
(µ; r) above are well defined, we can verify

if these candidate solutions satisfy the sign restrictions that were
not included in r (that is, we verify the primal feasibility of the
solutions). If the primal feasibility condition is satisfied we store
the candidate values; else we penalize them to guarantee that
they are never a solution. More concisely, we define the auxiliary
functions:

f +

max(µ; r) ≡ vk,i,j(µ; r) − 2(1 − 1ms (x
∗

+
(µ; r)))c,

f −

max(µ; r) ≡ −vk,i,j(µ; r) − 2(1 − 1ms (x
∗

−
(µ; r)))c,

where 1ms (x) ≡ 1{S(µ)′x ≥ 0ms×1} is 1 if and only if x satisfies all
the inequality restrictions in S(µ). The functions f +

max, f
−
max allow us

7 The constant c̄ is the maximum value of the following programs:

c̄ ≡ max
i,k

sup
B∈Rn×n

e′

iCk(A)Bej, s.t. BB′
= Σ . (4.1)
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to keep track of the candidate values (and their feasibility) for each
combination of active restrictions.

Consider now the penalization in the case inwhich vk,i,j(µ; r) =

0. This case is slightly different from the one considered in the
previous paragraph, as the candidate solutions (x∗

+
and x∗

−
) are not

always defined in this case. If there is a point x∗
̸= 0 satisfying the

equality restrictions in r and also the inequality restrictions that
are not included in r , we set

f +

max(µ; r) = f −

max(µ; r) = 0.

If no such point x∗
̸= 0 exists, vk,i,j(µ, r) = 0 cannot be a

solution and we set

f +

max(µ; r) = f −

max(µ; r) = −2c.

The following theorem shows that we can compute the value
function of the mathematical program (2.5) by selecting the max-
imum value of max{f +

max(µ; r), f −
max(µ; r)}, over r ∈ R. That is, we

can solve for vk,i,j(µ) by considering the different combinations of
active restrictions and select the maximum value ±vk,i,j(µ, r) over
them.

Theorem 1. Suppose that Assumptions 1 and 2 hold, then:

vk,i,j(µ) = max
r∈R

(
max{f +

max(µ; r), f −

max(µ; r)}
)
.

The minimum value is obtained analogously.

Proof. The intuition behind the proof is as follows. Note that
value achieved by any combination of active sign restrictions r for
which x∗

+
(µ; r) or x∗

−
(µ; r) is well-defined and feasible must be, by

definition, no larger than vk,i,j(µ). Thus, we only have to show that

max
r∈R

(
max{f +

max(µ; r), f −

max(µ; r)}
)

≥ vk,i,j(µ).

Since Lemma 1 showed that the value of the program (2.5) should
be of the form f +

max(µ; r) or f −
max(µ; r) for some r ∈ R, the result

must follow. The proof is formalized in Appendix A.2.

4.1.3. Using the algorithm in the UMP example
We verify Assumption 1 and 2 at the estimated LS values of µ,

denoted µ̂T . The simplest way to verify Assumption 1 is to consider
the different candidate solutions for the different combinations
of active constraints and check whether one of these solutions is
feasible. For Assumption 2, note that regardless of the number of k
columns selected from S the resultingmatrix R(µ, e(k)) will always
have full column rank. Thus, Assumption 2 is also verified.8

We now use our algorithm to evaluate the identified set and
report vk,i,j(µ̂T ) and vk,i,j(µ̂T ) for the cumulative IRFs.9 The bounds
in Fig. 1 correspond to a one standard deviation structural UMP
shock.

8 Verifying Assumption 2 with more general restrictions requires additional
work. For example, suppose that the researcher is interested in including the
restriction:

e′

2C1(A)B1 ≥ 0.

This restriction says that the UMP shock cannot decrease the growth rate in
Industrial Production even one-period after the shock. Since C1(A) = A1 , the
vector e′

2C1(A) is equal to the second row of A1 , which we can denote as
(A1,(2,1), A1,(2,2), A1,(2,3), A1,(2,4)). Assumption 2 will be satisfied as long as µ is such
that A1,(2,j) ̸= 0 for all j = 1, . . . , 4, which means that each of the entries in the first
lag of Yt−1 has predictive power on Yt after controlling for the rest of the lags.
9 The formula for the maximum (minimum) kth period ahead cumulative IRF

replaces Ck (̂AT ) by C0 (̂AT ) + C1 (̂AT )+, . . . ,+Ck (̂AT ).

We consider first the equality/inequality restrictions in Table 1.
Evaluating the endpoints of the identified set for the 4 variables
in the VAR, over 36 horizons, takes around 0.1 s. We then include
an additional inequality restriction on the response of output to an
expansionaryUMP shock. Namely,we assume that even one period
after the shock, the cumulative effect on IP cannot be negative
(e′

2(C0 + C1(A))B1 ≥ 0). Fig. 1 shows that the upper bounds of the
identified sets under the two identification schemes almost over-
lap. The figure suggests that the noncontemporaneous constraint
has thus little additional identification power.

There are at least two other ways of evaluating the maximum
and minimum response (although only our algorithm is guaran-
teed to provide a global solution in a finite number of steps). One
approach is to simply use a numerical solver (such as Matlab’s
fmincon) to get the value of the non-linear, non-convex program
in (2.5). The result in Theorem1 allows us to avoid the specification
of the standard tuning parameters for numerical optimization rou-
tines (such as initial conditions, algorithms for the solver, tolerance
levels for the solutions, and number of iterations).

Another approach is to rely on a version of the Bayesian algo-
rithm in Uhlig (2005). Given reduced-form parameters µ and D
draws of a unit vector q ∈ Rn, one could report the maximum and
minimum value over {λk,i,j(µ, qd)}Dd=1. Note that such algorithm is
essentially a random grid search approach to solve the program
(2.5). The grid search approach underestimates the identified set.
In our application the bias is negligible for D = 10, 000 draws (the
algorithm, however, takes around 300 s to run).

4.2. Theorem 2

In this section we show that the endpoints of the identified set
– vk,i,j(·) and vk,i,j(·) – are directionally differentiable functions of
the reduced-form parameterµ. This result is the basis of our delta-
method approach to conduct inference in set-identified SVARs.

4.2.1. Assumptions
In order to establish our differentiability result we need an

additional regularity condition. Our key assumption is as follows:

Assumption 3. The matrices Z(·) and S(·) are differentiable at µ.

We are not aware of equality/inequality restrictions in the SVAR
literature that do not satisfy this property. In particular, all the
examples given in Section 2.2 of this paper satisfy Assumption 3
for every value of µ ∈ M.

4.2.2. Directional differentiability
We will continue working with the auxiliary function

vk,i,j(µ; r(µ)), where we now explicitly acknowledge the possible
dependence of r on µ. Lemma 2 in Appendix A.3 shows that if
Assumptions 1–3 hold and vk,i,j(µ; r(µ)) ̸= 0, then the function
vk,i,j(µ; r(µ)) is differentiable with respect to (vec(A)′, vec(Σ)′)′
with the derivative v̇k,i,j(µ; r(µ)) given by:

∂vk,i,j(µ; r(µ))
∂vec(A)

=
∂vec(Ck(A))

∂vec(A)
(x∗(µ; r(µ)) ⊗ ei)

−

l∑
k=1

w∗

k
∂vec(rk(µ))

∂vec(A)
x∗(µ; r(µ))

∂vk,i,j(µ; r(µ))
∂vec(Σ)

= λ∗Σ−1x∗(µ; r(µ)) ⊗ Σ−1x∗(µ; r(µ))

−

l∑
k=1

w∗

k
∂vec(rk(µ))
∂vec(Σ)

x∗(µ; r(µ)),
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Fig. 1. Identified Set for the Cumulative Impulse Response Functions to a one standard deviation UMP shock (given µ̂T ) for two different identification schemes. (Solid, Blue
Line) Endpoints of the identified set for the cumulative responses given µ̂T and the equality/inequality restrictions in Table 1. (Blue, Crosses) Endpoints of the identified set
with the additional restriction that the cumulative response of IP to a UMP shock one month after impact is non-negative, e′

2(C0 + C1(A))B1 ≥ 0. Note that the upper bounds
of the identified sets under the two identification schemes almost overlap. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

where rk(µ) denotes the kth column of r(µ),

x∗(µ; r(µ)) = Σ1/2
(
MΣ1/2r(µ)

)
Σ1/2Ck(A)′ei

/
vk,i,j(µ; r(µ)),

λ∗
≡

1
2
vk,i,j(µ; r(µ)), w∗

≡ [r(µ)′Σr(µ)]−1r(µ)′ΣCk(A)ei,

and w∗

k is the kth component of the vector w∗.10
We now state the definition of directional differentiability and

present our second theorem.

Definition 3. We say that the real-valued function v with domain
M ⊆ Rd is directionally differentiable at µ if for any h ∈ Rd, any
sequence tN → ∞, and any sequence hN ∈ Rd such that hN → h

10 The envelope theorem sheds light on the derivative formula provided in Lemma
2. Note first that, by definition,

vk,i,j(µ; r(µ)) = max
x∈Rn

e′

iCk(A)x s.t.

x′Σ−1x = 1 and r ′(µ)x = 0l×1.

The auxiliary Lagrangian function of this problem is given by

L(x; µ, r(µ)) = (x′
⊗ e′

i)vec(Ck(A))

− λ

(
(x′

⊗ x′)vec(Σ−1) − 1
)

− w′(r(µ)′x),

where λ is the Lagrange multiplier corresponding to the quadratic equality re-
striction and w ∈ Rl is the vector of Lagrange multipliers corresponding to the
l equality restrictions. The envelope theorem suggests that v̇k,i,j(µ; r(µ)) is given
by the formula in Lemma 2. This intuition is confirmed in the proof of Lemma 2
provided vk,i,j(µ; r(µ)) ̸= 0.

(µ + tNhN ∈ M), there exists a continuous function v̇µ : Rd
→ R

such that:

tN
(
v(µ + hN/tN ) − vk,i,j(µ)

)
→ v̇µ(h).

We refer to the function v̇µ as the directional derivative of v(·)
at µ.11

Let X∗(µ) denote the argmax of program (2.5). For x ∈ X∗(µ)
let r(µ; x) denote the matrix that collects all elements of Z(µ) and
S(µ) that are active at x.

Theorem2. Suppose that Assumptions 1–3 hold. Suppose in addition
vk,i,j(µ) > 0. Then vk,i,j is a directionally differentiable function of
the reduced-form parameter µ with the directional derivative given
by

max
x∈X∗(µ)

[
v̇k,i,j(µ; r(µ; x))′h

]
. (4.2)

Whenever X∗(µ) = {x∗
} is a singleton, the value function vk,i,j(µ) is

fully differentiable with the derivative v̇k,i,j(µ; r(µ; x∗)).12

Proof. See Appendix A.4.

11 See p.172 in Shapiro (1991).
12 If vk,i,j(µ) < 0 the directional derivative simply becomes

max
x∈X∗(µ)

[
−v̇k,i,j(µ; r(µ; x))′h

]
,
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Theorem 4.2, p. 223 in Fiacco and Ishizuka (1990) and Theorem
4.24, p. 280 in the book of Bonnans and Shapiro (2000) present
a generalized version of the envelope theorem. They show that –
under suitable constraint qualifications – the directional deriva-
tive (in direction h and evaluated at parameter µ) of the largest
and smallest value in a mathematical program with equality and
inequality constraints is given by

sup
x∈X∗(µ)

[
∇µL(x; µ)h

]
,

and

inf
x∈X∗(µ)

[
∇µL(x; µ)h

]
,

provided there is a unique set of Lagrange Multipliers supporting
the optimal solutions. Theorem 2 uses the results in Lemma 1 and
Lemma 2 – along with intermediate results from Ok (2007) – to
verify this formula.

Delta-Method vs. Bootstrap: We also note that directionally
differentiable functions have been a topic of recent research. Fang
and Santos (2015) show that the standard bootstrap is not con-
sistent when applied to parameters of the form v(µ), where v

is a directionally differentiable function. Kitagawa et al. (2017)
show that Bayesian credible sets based on the quantiles of the
posterior distribution of v(µ) will be asymptotically equivalent to
the frequentist bootstrap (which is not consistent in this case).
These results imply that typical frequentist and Bayesian inference
for directionally differentiable functions is not guaranteed to be
consistent.

The next section shows that the special form of the directional
derivative that arises in the class of SVAR models studied in this
paper allows the researcher to conduct (computationally conve-
nient) delta-method inference, with a slight adjustment on the
standard errors. We note that the recent paper of Hong and Li
(2017) provides an alternative frequentist point-wise consistent
inference procedure for directionally differentiable functions of
general form. Such an approach, however, has two drawbacks
compared to our delta method. First, implementing the numerical
delta-method in Hong and Li (2017) requires a user specified tun-
ning parameter. Second, their procedure requires the evaluation
of the value function for a large number of re-sampled values of
µ (whereas our delta-method only requires the evaluation of the
value functions at µ̂).

4.3. Theorem 3

This section proposes a delta-method interval of the form

CST (1 − α) ≡

[
vk,i,j(µ̂T ) − z1−α/2 σ̂(k,i,j),T/

√
T ,

vk,i,j(µ̂T ) + z1−α/2 σ̂(k,i,j),T/
√
T
]
,

where

µ̂T ≡ (vec(̂AT )′, vec(Σ̂T )′),

is the LS estimator for µ defined as

ÂT ≡

( 1
T

T∑
t=1

YtX ′

t

)( 1
T

T∑
t=1

XtX ′

t

)−1
, Σ̂T ≡

1
T − np − 1

T∑
t=1

η̂t η̂
′

t ,

with

Xt ≡ (Y ′

t−1, . . . , Y
′

t−p)
′, η̂t ≡ Yt − ÂTXt .

Wework under the assumption that
√
T (µ̂T −µ) is asymptotically

normal with some covariance matrix Ω .13 We use the results
in Theorem 2 and the asymptotic normality of µ̂T to suggest the
following formula for σ̂(k,i,j),T :

σ̂(k,i,j),T ≡ max
r∈R(µ̂T )

(
v̇k,i,j(µ̂T ; r)′Ω̂T v̇k,i,j(µ̂T ; r)

) 1
2
, (4.3)

where R(µ̂T ) is the set of all possible active constraints in program
(2.5) evaluated at µ̂T . Note that our procedure does not attempt to
estimate neither the argmax nor the argmin of program (2.5).

Frequentist Coverage: Let P denote the data generating pro-
cess and let IR

k,i,j(µ(P)) denote the identified set for the structural
parameter λk,i,j given the equality/inequality restrictions in R(µ).
This section shows that under our proposed specification of σ̂(k,i,j),T ,

lim inf
T→∞

inf
λ∈IR

k,i,j(µ(P))
P
(
λ ∈ CST (1 − α)

)
≥ 1 − α.

Consequently, the delta-method interval presented in this paper is
point-wise consistent in level.

Robust Bayesian Credibility: We also show that under some
regularity conditions our delta-method interval has, asymptoti-
cally, robust Bayesian credibility of at least the nominal level. To
formalize this statement, let P∗ denote someprior for the structural
parameters (A1, . . . , Ap, B) and let λk,i,j(A, B) ∈ R denote the
structural coefficient of interest. For a given square root ofΣ ≡ BB′

define the orthogonal matrix Q ≡ Σ−1/2B. It is well known that a
prior P∗ can be written as (P∗

µ, P∗

Q |µ), where P∗
µ is a prior on the

reduced-form parameters, and P∗

Q |µ is a prior on the orthogonal
matrix, conditional on µ. Following this notation, let P(P∗

µ) denote
the class of prior distributions such that µ∗

∼ P∗
µ.

Define the Robust Bayes Credibility of our delta-method region
as

RBC(Y1, . . . , YT )

≡ inf
P∗∈P(P∗

µ)
P∗

(
λ(A, B) ∈ CST (1 − α)

⏐⏐⏐ Y1, . . ., YT

)
. (4.4)

We show that if the prior for the reduced-form parameters µ

satisfies the Bernstein–von Mises Theorem and the bounds of the
identified set are differentiable then for any ϵ > 0:

lim
T→∞

P(RBC(Y1, . . ., YT ) < 1 − α − ϵ) = 0

Thus, our delta-method interval has asymptotic robust Bayesian
credibility of at least 1 − α.

We now describe the main large-sample assumptions used to
establish the frequentist coverage and the robust Bayesian credi-
bility of our delta-method interval.

4.3.1. Assumptions
The SVAR parameters (A1, . . . , Ap, B, F ) define a probability dis-

tribution, denoted P , over the data observed by the econometri-
cian. Our main assumptions concerning P are as follows. First, we
assume that the LS estimator µ̂T is asymptotically normal with a
covariance matrix that can be estimated consistently.

13 A common formula for Ω̂ based on the assumption of uncorrelated, possibly
heteroskedastic structural innovations is given by

Ω̂T ≡

( 1
T

T∑
t=1

vec
(
[̂ηtX ′

t , η̂t η̂
′

t − Σ̂T ]

)
vec

(
[̂ηtX ′

t , η̂t η̂
′

t − Σ̂T ]

)′

.

Our delta-method approach is also valid under the presence of time-series depen-
dence in ηt (we only need a heteroskedasticity and autocorrelation robust estimator
of Ω).
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Assumption 4 (Asymptotic Normality of µ̂T ). The data generating
process P is such that for µ(P) ∈ Rd:
√
T (µ̂T − µ(P))

d
→ ζ (P) ∼ Nd

(
0 , Ω(P)

)
,

and

Ω̂T
p

→ Ω(P).

Second, we will assume that the prior P∗
µ used to compute ro-

bust Bayesian credibility and the data generating process P satisfy
the Bernstein-von Mises Theorem in Ghosal et al. (1995). More
precisely, we assume that:

Assumption 5 (Bernstein–von Mises Theorem).

sup
B∈B(Rd)

⏐⏐⏐P∗

µ

(√
T (µ∗

− µ̂T ) ∈ B | Y1, . . ., YT

)
− P (ζ (P) ∈ B)

⏐⏐⏐ p
→ 0,

where ζ (P) ∼ Nd(0, Ω(P)), and B(Rd) is the set of all Borel
measurable sets in Rd.

Assumption 5 is satisfied for Normal-Inverse Wishart prior
(see Uhlig (2005)) in a VAR model with Gaussian i.i.d. errors
(see Gafarov et al. (2016)). More generally, if the VAR reduced-
form errors are i.i.d. Gaussian, Theorems 1 and 2 in Ghosal et al.
(1995) imply that Assumption 5 will be satisfied whenever P∗

µ has
a continuous density at µ with polynomial majorants.

4.3.2. Large-sample coverage and robust Bayesian credibility
Dümbgen (1993), Shapiro (1991), and Fang and Santos (2015)

have shown if v is a directionally differentiable function with
directional derivative v̇µ(h) (in direction h evaluated at µ) then:
√
T (v(µ̂T ) − v(µ))

d
→ v̇µ(ζ ),

whenever Assumption 4 holds. Theorem 2 in the previous section
established that the directional derivative of vk,i,j – in direction h
evaluated at µ – is given by

max
x∈X∗(µ)

[
v̇k,i,j(µ; r(µ; x))′h

]
,

where X∗(µ) is the argmax of program (2.5) at µ. Thus, Theorem 2
and Assumption 4 imply that
√
T (vk,i,j(µ̂T ) − vk,i,j(µ))

d
→ max

x∈X∗(µ)

[
v̇k,i,j(µ; r(µ; x))′ζ

]
,

where

v̇k,i,j(µ; r(µ; x))′ζ ∼ N1

(
0, v̇k,i,j(µ; r(µ; x))′Ω v̇k,i,j(µ; r(µ; x))

)
.

Our suggestion – which exploits the specific form of the direc-
tional derivative in the SVAR context – is to consider:

σ̂(k,i,j),T ≡ max
r∈R(µ̂T )

(
v̇k,i,j(µ̂T ; r)′Ω̂T v̇k,i,j(µ̂T ; r)

) 1
2
,

where R(µ̂T ) is the set of all the different collections of active
constraints evaluated at µ̂T . The idea is that σ̂(k,i,j),T converges in
probability to

max
r∈R(µ)

(
v̇k,i,j(µ; r)′Ω v̇k,i,j(µ; r)

) 1
2
,

which is larger than or equal to

max
x∈X∗(µ)

(
v̇k,i,j(µ; r(µ, x))′Ω v̇k,i,j(µ; r(µ, x))

) 1
2
.

Thus, our formula for the standard error implies that there is no
need to estimate neither the argmax nor the argmin of the program
defining v(µ). The suggested confidence interval is shown to be

point-wise consistent in level.14 We also show that our delta-
method interval has, asymptotically, robust Bayesian credibility
of at least the nominal level (provided some regularity conditions
are satisfied). These two properties are formalized in the following
theorem.

Theorem 3. Let σ̂(k,i,j),T be defined as in (4.3). Suppose that the
asymptotic variance of the candidate value functions in X∗(µ) and
X∗(µ) are strictly positive; that is

min
x∈X∗(µ(P))∪X∗(µ(P))

∥Ω1/2(P)v̇k,i,j(µ(P); r(µ(P); x))∥ > 0.

(a) If Assumptions 1– 4 are satisfied at µ = µ(P), then

lim inf
T→∞

inf
λ∈IR

k,i,j(µ(P))
P
(
λ ∈ CST (1 − α)

)
≥ 1 − α.

(b) If in addition Assumption 5 holds and X∗(µ(P)) and X∗(µ(P))
are both singletons, then for any ϵ > 0:

lim
T→∞

P
(

inf
P∗∈P(P∗

µ)
P∗

(
λ(A, B) ∈ CST (1 − α)

⏐⏐⏐ Y1, . . ., YT

)
< 1 − α − ϵ

)
= 0.

Proof. See Appendix A.5.

Note that we have assumed that the identified set is non-empty
at µ, and we have also showed that under Assumptions 1–4 the
probability of observing an empty identified set at µ̂T converges to
zero as the sample size grows to infinity. It is of course still possible
to observe an empty identified set at a given realization of µ̂T . In
this case, our algorithm will report a maximum response equal to
−c and a minimum response equal to c .15

4.3.3. Monte-Carlo Evidence
Frequentist Coverage: We conduct a simple Monte-Carlo ex-

ercise to study the coverage probability of our delta-method inter-
val. We set (1 − α) = .68 implying that z1−α/2 = .9945. Instead of
generating new draws of (Y1, . . . , YT ), we generate 10,000 draws
of µ̂T directly from its asymptotic normal distributionNd(µ, Ω/T )
(where we fix the values of µ and Ω at its estimated values in
the UMP example). We decided to proceed in this way in order to
‘enforce’ the asymptotic normality assumption for µ̂T (which is the
key requirement in part a) of Theorem 3). We set T = 342 which
corresponds to the number of periods in our empirical application.

For each ‘draw’ of µ̂T (denoted µ∗) we compute the interval[
vk,i,j(µ

∗) − .9945 σ ∗

(k,i,j),T/
√
T , vk,i,j(µ∗) + .9945 σ ∗

(k,i,j),T/
√
T
]
,

where we treat Ω as known to compute the formula for the
standard error σ̂(k,i,j),T . We do this to assume away any problem
concerning the estimation of Ω (as Theorem 3 assumes that we
have a consistent estimator for the asymptotic variance of µ̂T ).

Finally, we check whether [vk,i,j(µ̂T ), vk,i,j(µ̂T )] is contained
in the confidence interval corresponding to each draw µ∗ from
Nd(µ̂T , Ω̂T ). The estimated probability provides a lower bound on
the coverage of the identified parameter. The results are reported
in Fig. 2. We note that the simulated coverage probability lies
between 68% and 84% (except for the contemporaneous IRF for

14 The question of how to build a uniformly consistent in level, delta-method
confidence set for a set-identified parameter is beyond the scope of this paper. For
the readers interested in uniform inference for set-identified parameters in SVARs
our suggestion is to apply the projection approach developed in Gafarov et al.
(2016). In comparison, the delta-method approach described in this paper is faster
to implement.
15 In ourMatlab implementation, this will generate a warningmessage asking the
user to drop restrictions.
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Fig. 2. Monte-Carlo coverage probability based on the model µ∗
∼ N (µ̂T , Ω̂T /T ), T = 342. (Circles) Monte-Carlo estimate of the probability P

(
[vk,i,j(µ̂T ), vk,i,j(µ̂T )] ⊂

[vk,i,j(µ
∗) − .9945 σ ∗

(k,i,j),T /
√
T , vk,i,j(µ∗) + .9945 σ ∗

(k,i,j),T /
√
T ]

)
for the model µ∗

∼ N (µ̂T , Ω̂T ), with T = 342. The values µ̂T and Ω̂T correspond, respectively, to
the estimators of the reduced-form parameter and its asymptotic covariance matrix in the UMP application. (Solid Line) Nominal confidence level for the delta-method
confidence interval (68%).

FFRwhich is equal to zero by assumption). The simulated coverage
probability is higher than the nominal size of 68%. This is consistent
with our theorem, as we are using a standard error that protects
against potential violations of full differentiability (even when the
function is differentiable at µ).16

Robust Bayesian Credibility in the UMP application:We also
compute the robust Bayesian credibility of our delta-method inter-
val based on an uninformative Normal-Inverse Wishart prior on µ

(following (Uhlig, 2005)). Namely, we generate 10,000 draws of
µ∗ from the posterior distribution and report the share of draws
for which [vk,i,j(µ

∗), vk,i,j(µ∗)] is contained in[
vk,i,j(µ̂T ) − .9945 σ̂(k,i,j),T/

√
T , vk,i,j(µ̂T ) + .9945 σ̂(k,i,j),T/

√
T
]
.

The results are provided in Fig. 3. The simulated credibility is larger
or close to the nominal level of 68%, which is consistent with part b
of Theorem 3. We also report the robust Bayesian credibility based
on the asymptotic normal approximation in Fig. 5 in Appendix B.1.

5. Unconventional monetary policy shocks

In August 2010 the Federal Open Market Committee an-
nounced: ‘‘The Committee will keep constant the Federal Reserve’s
holdings of securities at their current level by reinvesting principal

16 One can use the ideas of Freyberger and Horowitz (2015) to propose an
alternative estimator for the standard error which could deliver yet tighter CS. We
leave this extension for further research.

payments from agency debt and agencymortgage-backed securities in
longer-term Treasury securities.’’ This announcementwas an impor-
tant prelude for the second part of theQuantitative Easing program
(QE2) (see p. 244 in Krishnamurthy and Vissing-Jorgensen (2011)
for a detailed discussion). In addition, this announcement gener-
ated a drop in the intraday yield for two- and ten-year treasury
bond. In fact, from the end of July 2010 to the end of August 2010
the 2 year Treasury bond rate fell by 10 basis points.

Fig. 4 uses our delta-method approach to construct confidence
bands for the evolution of the levels of the four variables in the
monetary SVAR. We fix all the variables at their level on July 2010
and we trace their evolution (over a 12-month window) according
to the confidence set for their cumulative responses. The motiva-
tion for this exercise is as follows. Suppose that – back in August
2010 – an econometrician is asked to provide confidence bands
for the evolution of IP, CPI, 2YTB, and FF after the August 2010
announcement of the Federal Open Market Committee (FOMC).
The econometrician observes the realization of themacroeconomic
variables from July 1979 until August 2010, but decides to de-
liberately ignore the two years of data after the crisis (to avoid
introducing structural changes, stochastic volatility, or any other
feature that will complicate the estimation of the VAR).

The econometrician uses the data until December 2007 – one
semester before the financial crisis – to conduct delta-method
inference on the cumulative responses to a one standard deviation
unconventional monetary policy shock. The econometrician then
uses these cumulative responses to get a rough idea of the evo-
lution of the variables (in levels) following the announcement of
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Fig. 3. Robust Bayesian credibility of the delta-method interval based on the posterior distribution corresponding to an uninformative Normal-Inverse Wishart prior

on µ∗ (as in Uhlig, 2005), T = 342. (Circles) Monte-Carlo estimate of the probability P∗
µ

(
[vk,i,j(µ

∗), vk,i,j(µ∗)] ⊂ [vk,i,j(µ̂T ) − .9945 σ̂(k,i,j),T /
√
T , vk,i,j(µ̂T ) +

.9945 σ̂(k,i,j),T /
√
T ] | Y1, . . . , YT

)
based on the posterior distribution associated to an uninformative Normal-Inverse Wishart prior on µ∗ (as in Uhlig, 2005) with T = 342.

The values µ̂T and Ω̂T correspond, respectively, to the estimators of the reduced-form parameter and its asymptotic covariance matrix in the UMP application. (Solid Line)
Nominal level of the delta-method interval (68%).

the Federal Reserve in August 2010. The econometrician assumes
there is a linear trend for CPI/IP, and ignores sampling uncertainty
coming from the trend estimation in reporting the bands.

An ex-post evaluation of this exercise (over a window of 12
months) is reported in Fig. 4.17 We note that the observed dy-
namics for CPI, IP, GS2, and FFR from August 2010 to July 2011
fall within the bounds motivated by our delta-method interval.
We also note that our delta-method interval misses the observed
value at most three out of 12 months, which means that our 68%
confidence set covers each of these variables at least 75% of the
time. We also report the 68% Bayesian credible sets.

Computational Cost: We close this section with some com-
ments regarding the computational cost of our delta-method
procedure. Most of the work to compute the endpoints of the
identified set and its derivatives is analytical. Consequently, prac-
titioners can expect the computational burden of our procedure
to be low. We note that the implementation of our delta-method
interval in the running example takes only around .15 s (using a
standard Laptop @2.4 GHz IntelCore i7).

Comparisonwith the Projection Approach: Fig. 6 in Appendix
B.1 presents a comparison between the delta-method approach
and the projection approach recently proposed by Gafarov et al.
(2016) [GMM16]. The projection approach has two theoretical
properties that we were not able to verify for the delta-method.

17 The reason to focus in a 12-month window is to cover the period between the
QE2 announcement and the announcement of the so-called ‘‘Operation Twist’’ in
September 2011. See http://www.federalreserve.gov/newsevents/press/monetary/
20110921a.htm.

First, projection is consistent in level uniformly over a reason-
able class of data generating processes. Second, projection yields
valid simultaneous inference; that is, it covers the whole impulse-
response function (across different horizons and different vari-
ables) and not only its scalar coefficients.18 We note that in our
application the projection confidence interval (which iswider than
the delta-method bands) contains the realized value of IP, CPI,
2YTB, and FF for every horizon under consideration.

Comparison with GK Robust Approach: Fig. 7 in the Appendix
reports the robust-Bayesian credible set in Giacomini and Kita-
gawa (2015). The implementation of the robust-Bayes credible
set (based on 10,000 posterior draws and using our algorithm to
evaluate the endpoints) took around 9106 s.19

Comparison with GSM: Fig. 9 in the Appendix reports the 68%
Bonferroni confidence set of Granziera et al. (2017).20 Appendix
A.7.1 describes the algorithm and related computational issues.

18 While our paper focuses on point-wise inference, it is straightforward to pro-
vide joint inference by applying Bonferroni correction to the significance level. Fig.
8 compares confidence sets that cover not only a single impulse response but the
impulse response functions of all variables and all horizons of interest.We compare
our Delta-method results when using a Bonferroni-correction with (Inoue and
Kilian, 2013)’s joint Bayes credible set for impulse response functions using the
priors for the reduced-form parameters in Uhlig (2005). See Appendix A.7.2.
19 Out of which 1266 s were used just to compute the identified set for each
posterior draw, and the remaining time to translate the posterior bounds into the
GK robust bounds.
20 Granziera et al. (2017) also propose a projection-basedCSwhich is a special case
of the Bonferroni CS. There is no clear theoretical ranking of the various CS proposed
in that paper so we have chosen the least computationally intensive variation.

http://www.federalreserve.gov/newsevents/press/monetary/20110921a.htm
http://www.federalreserve.gov/newsevents/press/monetary/20110921a.htm
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(a) Consumer Price Index. (b) Industrial Production Index.

(c) 2-year Treasury Bond rate. (d) Federal funds rate.

Fig. 4. Delta-Method Interval for CPI, IP, 2yTB, FF after the August 2010 announcement. ( Shaded Area) Evolution of the Levels CPI, IP, 2yTB, and FF based on our 68% delta
method confidence bands for the coefficients of Cumulative Impulse-Response Functions. ( Solid Line) Observed Levels of CPI, IP, 2yTB, and FF from December 2009 to July
2011. Both the CPI index and the IP index were normalized to have a starting value of 100. ( Dashed Line) Evolution of the Levels CPI, IP, 2yTB, and FF based on the 68%
credible set constructed using the priors in Uhlig (2005).

The computational cost is approximately 4,000 s on a single core
machine for 10,000 grid points.

It is hard to provide a general theoretical comparison of the
length of the Bonferroni CS and the delta method. The efficiency
ranking of the two procedures is likely depend on the particular
DGP. One can see that, in our illustrative example, the 68% delta
method CS is tighter than the corresponding Bonferroni CS with
the same nominal level for almost all combinations of the horizons
and time series. One possible explanation behind the larger length
of Granziera et al. (2017) is that their procedure is uniformly
consistent in level over the class of GDPs for which the reduced
form impulse response functions converge to a normal distribu-
tion. We note that our delta-method is not guaranteed to have this
property.

6. Conclusion

This paper focused on set-identified structural VARmodels that
impose equality and inequality restrictions to set-identify only
one structural shock. For this class of models, the endpoints of
the identified set have special properties that allow an intuitive
and computationally simple approach to conduct frequentist and
(asymptotic) robust Bayes inference. Specifically, the paper made
three contributions:

(i) We presented an algorithm to compute – for each horizon,
each variable, a fixed vector of reduced-form parameters, and a
given collection of equality and/or inequality restrictions – the

largest and smallest value of the coefficients of the structural IRF
(see Theorem 1). Our algorithm did not require random sampling
from the space of orthogonal matrices or unit vectors. Instead,
we treated the bounds of the identified set as the maximum and
minimum value of a mathematical program whose solutions we
were able to characterize analytically. Our algorithm can be used
outside our delta-method framework (for example, in computing
the maximum and minimum response for the (Giacomini and
Kitagawa, 2015) robust Bayes approach).

(ii) We provided sufficient conditions under which the largest
and smallest value of the structural parameters are direction-
ally differentiable functions of the reduced-form parameters (see
Theorem 2). This result also seems to be of interest in its own
right and could be used to explore the frequentist properties of the
robust-Bayesian procedure in Giacomini and Kitagawa (2015).

(iii) Finally, we proposed a computationally convenient delta-
method approach to conduct inference for the set-identified co-
efficients of the structural IRF. We presented sufficient conditions
to guarantee the point-wise consistency in level and asymptotic
robust Bayes credibility of our suggested inference approach. We
note that the delta-method in this paper exploited the structure of
the directional derivative.

We illustrated our results by set-identifying the responses of
different U.S.macroeconomic variables to an unconventionalmon-
etary policy shock. We used the theory and methods developed in
this paper to assess the effects of the announcement of the second
part of the Quantitative Easing program in August 2010.
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