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Abstract

Hsieh and Klenow (2009) shows that misallocation creates large aggregate TFP
losses, explains international TFP differences, and can be quantified through factor pro-
ductivity dispersions. Using micro data from Chile, Colombia, Indonesia, and Germany,
we show a substantial correlation in factor productivities across factors and therefore
propose to decompose dispersion in factor productivities in dispersion in technology
and markup instead. Relative to Germany, misallocation is larger in the developing
economies. TFP losses from misallocation are explained to 1/3 by larger technology
and to 2/3 by larger markup dispersion. Finally, we discuss market outcomes as poten-
tial sources of markup and technology dispersion.
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1 Introduction

The allocation of factors to their most productive use is a key determinant of economic
prosperity (Jones, 2016). First-best efficiency requires that factors produce the same
marginal revenue across all production units. Therefore, it has become a popular ap-
proach to quantify the aggregate productivity losses from misallocation by estimating
in micro data deviations (wedges) from the first-order conditions that characterize the
efficient factor demand. Following the seminal work by Hsieh and Klenow (2009), many
studies show these distortions to be substantial finding large dispersions of factor pro-
ductivity even within industries.1

This paper suggests to look at misallocation from a somewhat different angle. We
ask whether a plant is inefficient in how it produces a given level of output (i.e., using
the wrong factor mix, in short technology), and whether it is inefficient in how much it
produces (such that it has deviations in markups from the optimal level). In other words,
we rotate wedges in the first-order conditions into differences/wedges in markups and
technologies. Whereas wedges in the first-order conditions are correlated across factors,
which makes it somewhat hard to interpret them, we show that our rotation yields
uncorrelated wedges.2 In addition we provide evidence on the persistence of measured
misallocation at the plant level. Finally, we discuss a variety of potential explanations
for misallocation.

We use micro data from four countries—Germany (firm-level), Chile, Colombia, and
Indonesia (plant-level)—and obtain five results: First and foremost, misallocation is very
persistent at the plant level. Between 66% and 90% of all identified productivity losses
come from persistent misallocation within 4 digit industries. Second, all considered dis-
persion measures are substantially larger in the three developing economies vis-à-vis
Germany. Third, single-factor (capital and labor) productivity wedges are correlated
among each other, while wedges in “technology” and “markup” are close to orthogonal.
Fourth, dispersion of factor productivities is mainly the result of persistent technology
differences, and not markup dispersion. Yet, markup dispersion is much more costly
in terms of measured productivity losses than is dispersion in technology. Overall, we
estimate that aggregate TFP could be between 12% and 44% higher under the first-best
efficient allocation of production factors, i.e., absent any misallocation. Two-third of the
measured efficiency loss through misallocation comes from firms choosing a suboptimal

1See Restuccia and Rogerson (2008), Hsieh and Klenow (2009), Peters (2016), Asker et al. (2014),
Gopinath et al. (2017), and Restuccia and Santaeulalia-Llopis (2017) to name a few.

2Our approach can be viewed as a decomposition of the wedges Hsieh and Klenow (2009) identify
without changing the identification of misallocation itself.

1



scale of operations compared to the industry benchmark markup. Fifth, we find that
persistent technology differences are significantly less dispersed in more competitive en-
vironments. In other words, firms with less competitive pressure can maintain inefficient
production technologies more easily then firms with strong competition.

This empirical evidence is informative about potential explanations of measured mis-
allocation. One popular view is that misallocation results from policy-induced distor-
tions. We instead ask whether there may be market-based explanations, too. First,
persistent differences in markups can be the result of imperfect competition that is not
monopolistic. Limit pricing is one such example. Second, we argue that less stable de-
mand in the developing countries may be the source of more volatile markups. Third,
we argue that adjustment costs on factor mixes, adjustments costs on technology, are
likely the key ingredient to explain dispersions in “technology”. Consistent with this
explanation, we show that these dispersions are larger in less competitive environments.

Let us be more specific about the potential reasons of persistent markup differ-
ences. For example, the coexistence of niche and mass products in narrowly defined
industries can lead to markup dispersion (e.g., Bar-Isaac et al., 2012) – think of gener-
ics vs. patented pharmaceuticals.3 Similarly, persistent markup differences may arise
due to slow customer base accumulation and staggered entry in growing industries (see,
e.g., Gourio and Rudanko, 2014). A particularly simple setup to think about persistent
markup dispersions is limit pricing as in Peters (2016). Importantly, in such context
markup dispersion may be the result of increased competition or more innovation when
either competition or innovation is scarce. As such, greater markup dispersion may be
a phenomenon of faster growth, and not its impediment.

Similarly, there are good established theories for transitory markup differences. Rigid
prices naturally lead to markup differences if costs evolve stochastically. In monetary
economics, price rigidities are a channel through which inflation and inflation volatility
leads to welfare losses, see Calvo (1983) or Sheshinski and Weiss (1977). In fact, higher
inflation and inflation volatility might be behind our finding of higher transitory markup
dispersions in developing countries. Another potential explanation of cross-country dif-
ferences is that demand at the firm/plant level is less stable in these countries (see Asker
et al., 2014).

Lastly, our finding of persistent technology dispersion across plants links to the tra-
ditional putty-clay theory (Johansen, 1959), which has been advocated to address a

3Our results are complementary to Haltiwanger et al. (2018), who study departures from CES demand
and constant marginal costs in the Hsieh and Klenow (2009) framework. A related point regarding the
relationship between market structure and misallocation has also been raised by Asker et al. (2017)
studying the role of OPEC on the oil market.
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broad array of other empirical phenomena (Gilchrist and Williams, 2000, 2005; Gourio,
2011). Technology differences might, for example, be the result of putty-clay technology
choice under factor price uncertainty and lump-sum technology adjustment costs as in
Kaboski (2005).4 The fact that firms under less competitive pressure have more disperse
technology speaks in this direction. These firms can roll over to their customers some of
their higher costs of production from an inefficient technology. This aligns also well with
the fact that technology dispersion decreases in plant size, if technology adoption has
increasing returns to scale or if credit constraints affect technology adoption (see, e.g.,
Banerjee and Duflo, 2005; Midrigan and Xu, 2014). Cross-country differences in tech-
nology dispersion may also reflect the fact that relative factor prices are more variable
in developing countries, whether because of aggregate variability, because of local mar-
ket conditions, or because of financial frictions binding for some firms. Relatedly, David
et al. (2018) show that firms persistently differ in their exposure to aggregate conditions,
which translates into differential costs of capital, and thus technology differences.

If the dispersions in technology are indeed an indicator of substantial frictions that
firms are facing in adjusting their production technology, then this has an important
implication for empirical estimates of substitution elasticities. Compared to the fric-
tionless benchmark, firms will mute their technology adjustment in response to relative
factor-price changes if these are mean reverting. Consequently, simple regressions of
capital intensities on relative factor prices will fail to identify the long-run elasticity of
substitution even if they manage to identify exogenous price changes (see, e.g., Raval
(2014) or Oberfield and Raval (2014) for recent contributions or Chirinko (2008) for an
overview) and hence the estimated substitution elasticities are subject to a downward
bias. In fact, we provide evidence that this downward bias is likely substantial and
suggest an IV strategy to identify the long-run elasticity. When we regress factor in-
tensities on persistent factor price changes, the estimated substitution elasticity roughly
triples.5 This not only has important implications for income shares (see, e.g., Solow,
1956; Piketty, 2011, 2014; Karabarbounis and Neiman, 2013) but is also key for the effi-
ciency losses from technology dispersion. The more substitutable factors are the smaller
are losses from a suboptimal capital-labor ratio.

The remainder of this paper is organized as follows: Section 2 provides empirical
results, Section 3 decomposes the observed dispersions in TFP losses, and Section 4
revisits the role of market structure. Section 5 concludes and an appendix follows.

4A related explanation of technology dispersion is in Uras and Wang (2017), who consider a model
in which firms make distorted choices of their CES production technology weights on capital and labor.

5Chirinko and Mallick (2017) provide an alternative estimation strategy to identify the long-run
elasticity by filtering out transitory variation.

3



2 Dissecting factor productivity dispersions

2.1 Data description

We study dispersion in factor revenue productivity and its constituting components
using firm-level data from Germany and plant-level data from Chile, Colombia and
Indonesia. For Germany, we use the balance-sheet database of the Bundesbank, USTAN,
which is private-sector, annual firm-level data available for 26 years (1973-1998). For
Chile, Colombia and Indonesia, we have plant-level data from the ENIA survey for 1995-
2007, the EAM census for 1977-1991 and the IBS dataset for 1988-2010, respectively.
All data sets are focused on the manufacturing sector, with the exception of Germany,
which provides information for the entire private non-financial business sector. More
details on the data are provided in Appendix A.1.

In preparing the data for our analysis, we treat the various data sets in the most
comparable way. From each database, we use a firm’s/plant’s wage bill, value-added,
capital stock in book or current value, and its four-digit industry code. To obtain
economically consistent capital series for each firm/plant, we re-calculate capital stocks
using the perpetual inventory method whenever capital stocks are reported in book
values. We exploit information on capital disaggregated into structures and equipment,
which allows us to control for heterogeneity in capital composition across firms/plants.

We further need information on the depreciation and real interest rates. We do
not rely on depreciation as reported by firms/plants, as it is potentially biased for tax
purposes. Instead, we use economic depreciation rates by type of capital good obtained
from National Statistics.6 We then estimate a firm/plant-year specific depreciation rate,
δit, that capital mix of structures and equipment. We set the real rate to 5% for all
economies. This implies user costs of capital Rit = 5% + δit. In generating cross-
sectional statistics, we control for time variations in user costs by taking out four-digit
industry-year fixed effects. The data treatment and sample selection are described in
detail in Appendix A.2.

2.2 Persistent and transitory factor productivities

We compute average factor productivities per firm/plant (i) and year (t) using the
reported value added at current prices, pityit; labor expenses, WitLit as reported in the

6Depreciation rates for equipment and structures are obtained from Volkswirtschaftliche Gesamtrech-
nung (VGR) for Germany, and from Henriquez (2008) for Chile. We use the Chilean data for Colombia
and Indonesia in lieu of national data, which are not available. The depreciation rates are 15.1% (equip-
ment) and 3.3% (structures) in Germany, and 10.5% (equipment) and 4.4% (structures) for Chile.
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profit and loss statements; and capital expenses, RitKit, computed following the steps
detailed above. Taking logs, we define revenue productivities of labor and capital:

αL
it := log(pityit)− log(WitLit); αK

it := log(pityit)− log(RitKit). (1)

Using expenditures and value added implicitly controls for quality differences in both
inputs and outputs (c.f. Hsieh and Klenow, 2009). We remove four-digit industry-year
fixed effects from the data.

For any of these variables, say, xit, we distinguish between persistent and transitory
deviations from the industry-year mean. We identify the persistent component x̄it as
5-year moving averages, and the transitory component x̂it as deviations thereof:

x̄it :=
1

5

2∑
s=−2

xit+s, x̂it := xit − x̄it. (2)

We further consider a 9-year moving-average filter, set up analogously to equation 2, to
identify components of particularly high persistence.

The first panel of Table 1 reports standard deviations and correlation for labor and
capital productivity in all four countries. Three observations stand out: First, capital
and labor productivity are positively correlated in the transitory component (ρ ≈ 50%),
while they tend to be negatively correlated in the persistent component (ρ ≈ −10%).
Second, the persistent components in productivity explain the vast majority of cross-
sectional productivity differences (between 60% and 92% for labor and between 79%
and 94% for capital). Third, the developing economies show larger productivity disper-
sions. The differences in the transitory component are more pronounced compared to
the persistent component.7

To shed further light on how long-lived factor productivity differences between firms/
plants are, we use a nine-year moving-average filter. The findings are documented in
Table 9 in the Appendix. The striking observation is that even at such long horizon,
the persistent component still accounts for at least half of the total variance in labor
productivity and at least two third of the total variance in capital productivity. In
other words, a large fraction of the observed deviations in firm/plant-specific factor
productivities from their industry-year specific mean appear not to revert back to mean
but rather reflect permanent differences.

Finally, the finding of a positive correlation between labor and capital productivity

7These findings are robust, both to weighting firm/plant-level observation by value added, see Table 8,
and to replacing the five-year moving-average filter by the HP filter with λ = 6.25, see Table 7.
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Table 1: Transitory and persistent components of factor productivities, markup and
technology

std(α̂L
it) std(α̂K

it ) ρ(α̂L
it, α̂

K
it ) std(ᾱL

it) std(ᾱK
it ) ρ(ᾱL

it, ᾱ
K
it )

Transitory Component Persistent Component

DE 0.066 0.119 0.352 0.229 0.456 -0.207
(0.000) (0.001) (0.002) (0.002) (0.004) (0.004)

CL 0.226 0.310 0.545 0.294 0.613 -0.076
(0.006) (0.007) (0.014) (0.011) (0.024) (0.020)

CO 0.153 0.182 0.552 0.273 0.681 -0.074
(0.003) (0.003) (0.010) (0.007) (0.021) (0.016)

ID 0.288 0.415 0.483 0.353 0.736 0.014
(0.004) (0.004) (0.006) (0.005) (0.011) (0.009)

std(µ̂it) std(κ̂it) ρ(µ̂it, κ̂it) std(µ̄it) std(κ̄it) ρ(µ̄it, κ̄it)

Transitory Component Persistent Component

DE 0.064 0.114 -0.155 0.172 0.551 0.062
(0.000) (0.001) (0.002) (0.001) (0.004) (0.004)

CL 0.219 0.266 -0.082 0.241 0.700 -0.084
(0.005) (0.008) (0.014) (0.007) (0.027) (0.019)

CO 0.145 0.160 -0.085 0.287 0.752 -0.507
(0.003) (0.004) (0.011) (0.006) (0.022) (0.013)

ID 0.278 0.373 -0.097 0.310 0.812 -0.102
(0.003) (0.004) (0.006) (0.004) (0.012) (0.008)

Notes: Cross-sectional standard deviations (std) and correlation (ρ) of transitory and persistent com-
ponents of labor and capital productivity, αL

it and αK
it as in (1), capital intensity, κit, and markup,

µit, as in (3) and (4). DE: Germany, CL: Chile, CO: Colombia, ID: Indonesia. Transitory and per-
sistent components are obtained by applying a five-year moving average filter. Factor productivities
are demeaned by 4-digit industry and year, and expressed in logs. In parentheses: Clustered stan-
dard errors at the firm/plant level.
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Figure 1: Correlations of factor productivities by four-digit industry
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Notes: Transitory (Persistent) Correlation: Correlation between the transitory (persistent) com-
ponent of labor and capital productivity at the firm/plant level, controlling for year fixed effects.
Each circle represents a four-digit industry, where the size of a circle reflects aggregate employ-
ment in that industry. For this figure, we restrict industries to those that include at least 20
firms/plants.

in the short run and a negative/zero correlation in the long run does not only hold within
four-digit industries. In fact, we observe the same correlation pattern for the bulk of
four-digit industries, see Figure 1.

2.3 Rotating the productivity data: markups and technology

One alternative way to look at the data is to represent deviations in factor productiv-
ities by deviations in markups and technology. This is similar to looking at the average
of capital and labor productivity and their difference. Our markup measure is value
added relative to total expenditures on labor and capital

µit := log(pityit)− log(RitKit +WitLit) (3)

and our technology measure is the factor price-weighted capital intensity

κit := log(RitKit)− log(WitLit). (4)
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Using a CES production function, labor and capital productivity can be mapped into
markup and technology and vice-versa.

Similar to factor productivities, we do not view our markup and technology measures
as structural parameters. We also do not view these as wedges in the spirit of Hsieh and
Klenow (2009). Instead markup and technology are labels attached to the reduced-form
objects constructed through equations (3) and (4). However, measured markups and
technology differences lend themselves to economic interpretation. They are instructive
about the potential frictions behind them.

The second panel of Table 1 documents transitory and persistent markup and capital
intensity differences for all countries. The first observation is that capital intensities and
markups are virtually orthogonal (with persistent markups and capital intensities in
Colombia being the single exception). This suggests that analyzing the misallocation
data in terms of markups and capital intensities is the right perspective.

Second, differences in capital intensity are very persistent. The transitory compo-
nent makes up only between 4% (Germany) and 17% (Indonesia) of the total variance of
capital intensities. At the same time, persistent differences in capital intensity are sub-
stantially more dispersed in Chile, Colombia, and Indonesia than they are in Germany
with variances being twice as high in Indonesia compared to Germany.

On the contrary, the dispersion of persistent cross-sectional markup differences is
strikingly similar across countries, and transitory differences in markups are an im-
portant component of the total cross-sectional variance of markups – at least in the
developing economies (30% in Colombia, 50% in Chile and Indonesia) but less so in
Germany (12%). This may be related to demand being less stable in the developing
economies. In fact, the cross-sectional standard deviation of value-added growth (not
reported) is two to four times larger in these economies than in Germany.

These empirical findings are again highly robust, both to weighting and the HP
filter, see Tables 8 and 7. Further, especially for technology a large share of deviations
from industry-year mean are very long-lived. In fact, most of the deviations persist well
beyond five year as the results from the nine-year moving-average filter in Table 9 show.
This suggests that a large share of the technology differences rather reflect permanent
differences across firms/plants within industries.

In the appendix, we also investigate the effect our data treatment has on the measured
technology and markup dispersions. We report dispersions conditional on various data
treatment steps; see Tables 11, 12, and 13 in the appendix. The estimated TFP losses
can be up to four times larger when we drop various data-cleaning steps.
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3 Implications for aggregate productivity

3.1 TFP loss decomposition

While the magnitudes of dispersion in technology and markup within narrowly-
defined industries are interesting in their own right, they are hard to interpret in terms
of their macroeconomic importance. To obtain such an interpretation, we view them
through the lense of a model that is motivated by and similar to the model in Hsieh
and Klenow (2009). The important difference in our approach is that we do not assume
certain wedges to account for the observed dispersion. Instead, we directly map devi-
ations of technology and markup from their optimal values into aggregate total factor
productivity (TFP). In doing so, we use a second order approximation to the unit-costs
of production that makes use of the fact that markups and technology are approximately
orthogonal in the data.

We consider a unit mass of ex-ante identical firms, indexed by i. Each firm operates
a constant elasticity of substitution (CES) production function

yi = f(ki)Li , f(ki) = [αk
ρ−1
ρ

i + (1− α)]
ρ

ρ−1 , (Assumption 1)

where ρ is the elasticity of substitution between labor Li and capital Ki, and ki = Ki/Li.
We assume households have Dixit-Stiglitz preferences over output varieties yi, such that
aggregate output is

Y =

[∫
(ziyi)

η−1
η di

] η
η−1

, (Assumption 2)

where zi denotes a demand shifter, and η is the elasticity of substitution between va-
rieties. Firms engage in monopolistic competition, such that firm i’s demand curve is
given by

yi = zη−1
i (pi/P )−η Y,

where P =

(∫
zη−1
i p1−η

i di

) 1
1−η

(Assumption 3)

such that the price of any single firm i has an effect only on that firm’s demand.
All firms face the same wage, W , and user cost of capital, R. This implies that their
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marginal costs of production are a function of their capital-labor ratio, ki,

ci = c(ki) =
W +Rki
f(ki)

. (5)

The (gross) markup mi is defined as

mi = pi/ci. (6)

This setup makes transparent that firms and consumers share the benefits of lower
production costs. In turn, the lower the elasticity of substitution η the more of a cost
increase the firm can offload onto the consumer and the higher the ideal markup of
that firm would be. We have not specified the trade-offs firms face in setting prices and
technology, but the model can explain that firms in less competitive (higher markup)
markets have substantially larger technology dispersions.

We use this model setup to derive the TFP losses that of dispersion in technology
and markups. Our benchmark is an economy in which all firms use the unit-cost min-
imizing capital intensity k∗ = argmink c(k), charge unit markup m = 1 , and face a
productivity/demand shifter of z = 1. We compute TFP losses using a second-order
approximation around the benchmark and with respect to κ = log(k), ζ = log(z), and
µ = log(m). This yields

TFP loss ≈ E(ζ) + (η − 1)V(ζ)− ηV(µ)− 1

2ρ
s∗(1− s∗)V(κ), (7)

where E and V denote the cross-sectional expectations and variance operator, respec-
tively. s∗ is the capital expenditure share in the cost-minimizing optimum

s∗ = Rk∗/(W +Rk∗).

The first term, E(ζ), in (7) is aggregate productivity in the absence of any heterogeneity
across production units; the second term, (η − 1)V(ζ), reflects the Oi-Hartmann-Abel
effect of productivity dispersion. If individual productivities ζ are more dispersed, aggre-
gate productivity goes up/average costs fall. The third term, −ηV(µ), captures the loss
from markup dispersions, from deviations in allocative efficiency. The larger substitution
elasticity η between varieties, the larger this loss.8 The last term, − 1

2ρs
∗(1 − s∗)V(κ),

8Note that a larger η raises the quantity dispersion for some given price dispersion that lowers pro-
ductivity. At the same time, a larger η lowers the productivity losses for some given quantity dispersion
because different varieties become more substitutable. It is a feature of the CES aggregate that the
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captures how the dispersion of capital intensity lowers TFP. The higher the substitu-
tion elasticity ρ, the smaller is the loss from using an inefficient technology. A more
detailed derivation is provided in Appendix A.7. Broadly speaking, our approximation
makes clear that an optimal allocation answers two separate questions: V(κ) measures
misallocation in the sense of how things are produced and V(µ) measures misallocation
in the sense of what is produced.

3.2 Parameterization

To map the dispersions in the data into aggregate productivity losses, we need to
paramterize s∗, ρ, and η. Assuming s∗ is well approximated by the average cost share
across producers and time, we estimate s∗ directly from the micro data. We obtain a
capital share of 21% (Germany), 40% (Colombia), 32% (Chile), and 23% (Indonesia).

We estimate the elasticity of substitution between labor and capital, ρ, from time-
series information on the aggregate capital intensity and the relative factor price. In a
frictionless economic environment, the elasticity is determined by the contemporaneous
correlation between these variables. However, the identification is problematic in the
presence of frictions that prevent the immediate adjustment of production factors: The
contemporaneous response of the capital intensity to price movements (short-run elas-
ticity) then differs from the long-run elasticity, which we estimate from aggregate cross
country data, see Section 4.3. We obtain an estimated elasticity of 1.28. Our estimate
is well within the range of estimated values in the literature from 0.4 (Chirinko and
Mallick, 2017) to 3.4 (Ramirez Verdugo, 2005).

Finally, we follow Hsieh and Klenow (2009) in setting the remaining elasticity pa-
rameter to η = 3. This choice is conservative and restricts the role of misallocation
in explaining cross-country productivity differences. Recall that higher elasticities of
substitution increase the productivity losses from markup dispersion.

3.3 Results

Table 2 shows the loss in aggregate productivity due to dispersion in markups and
technology. Through the lense of our model, a direct consequence of larger dispersions
in developing economies is lower TFP. Quantitatively, the implied TFP differences are of
substantial importance. For example, misallocation in markups and technology accounts
for a 32% difference in aggregate TFP between Germany and Indonesia.

former effect dominates.
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Table 2: TFP losses (in %)

DE CL CO ID

12.1 28.4 28.6 43.8

Notes: TFP losses are computed using equation (7).

Next we decompose the total loss in TFP into losses from transitory and persis-
tent variation in markups and technology, respectively; see the first panel of Table 3.
Persistent technology differences, transitory markup differences and persistent markup
differences are each important, while transitory technology differences are negligible for
productivity lost through misallocation. There are substantial differences across coun-
tries in the importance of the three other components. In Germany more than half of the
misallocation losses come from technology dispersion. In Indonesia, it is only 1/3, despite
the far larger dispersion in technologies. There, as in Chile, short-run markup fluctu-
ations are important and make up 1/4 of the productivity losses. Persistent markup
differences across production units make up a third of all efficiency losses across all
countries.

The second panel of Table 3 puts the productivity losses of the developing economies
in a perspective relative to the German economy. On average transitory markup disper-
sion, persistent markup dispersion, and persistent technology dispersion each account
for 1/3 of the TFP loss vis-a-vis Germany. Still, there are differences across the three
developing countries. For Chile, the largest contributor in relative terms is the transi-
tory markup dispersion; for Colombia, it is the persistent markup dispersion; and for
Indonesia, both transitory and persistent markup dispersions are equally important.

4 Explanations of markup and technology dispersion

Within countries, the strongest forces of misallocation in terms of TFP losses are
persistent markup differences and persistent differences in the factor mix—technology
differences—, across firms in narrowly-defined industries. In the developing countries,
another important factor of productivity losses are short-lasting differences in markups.
Next, we ask to what extent established theories of imperfect competition, price setting
and real frictions can account for these dispersions. In the context of these theories, we
further ask whether misallocation, being an impediment to growth, can be addressed by
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Table 3: Decomposition of TFP losses

Transitory Component Persistent Component
(µ̂it) (κ̂it) (µ̄it) (κ̄it)

Within-country decomposition of TFP losses (in %)

DE 5.1 2.4 36.7 55.8
CL 25.4 5.5 30.7 38.4
CO 11.0 2.0 43.1 43.9
ID 26.5 7.1 32.9 33.5

Accounting for the difference with Germany (in %)

CL 40.4 7.9 26.3 25.4
CO 15.3 1.7 47.8 35.2
ID 34.7 8.9 31.5 25.0

Notes: Capital intensities, κit, and markups, µit, as defined in (3) and
(4). See notes of Table 1 for further explanation.

simple policies.

4.1 Persistent markup differences as a result of market structure

Differences of markups across firms/plants are not all transitory. Instead, persistent
markup dispersion is comparable in margnitude to transitory markup dispersion. To-
gether they create about 70% of the relative TFP losses in developing economies. Thus,
markup differences between firms/plants (within narrowly-defined industries) are key to
understanding misallocation. We propose a joint explanation of transitory and persis-
tent markup dispersions through differences in the competitive environment firms face
and through differences in innovation.

Suppose we start from the setup in Section 3.1, in which every firm is the monopolist
supplier of a variety. There are further no frictions such that all firms charge their
optimal, identical markup. Now suppose in some variety sectors there is entry of similarly
productive firms. As a result of increased competition, markups in those sectors will fall,
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and the cross-sectional dispersion of markups rises. Persistent markup differences may
thus be the result of market structure. If firms (persistently) face different degrees
of competition, this generates markup dispersion. Note however, that in such model
economy, more markup dispersion may reflect more competition, less market power, and
thus higher welfare. This stands in stark contrast to the conclusions drawn in Section 3.1.

Now suppose a firm that faces a competitor within its variety sector innovates. If the
firm’s productivity grows relative to its competitor, this will raise markups. If few firms
innovate, then more innovation lowers markup dispersion. Similar to entry, innovation
may explain a positive correlation between aggregate productivity growth and markup
dispersion.In Appendix A.8, we formalize the mechanisms discussed here through a styl-
ized model. We also carefully discuss the implications for aggregate productivity when
introducing entry within variety markets and innovation in the model of Section 3.1.

To the extent that firms in developing economies are further away from the technol-
ogy frontier, we may expect more frequent introduction of new technologies, either by
incumbents or entering firms. According to the view just sketched, the need for firm-
entry by itself may explain larger markup dispersion. In this case, an increase in markup
dispersion can well be a byproduct of fast growth through increased entry and declining
average markups through more competition.

4.2 Transitory markup differences as a result of rigid prices, inflation,
and unstable demand

While persistent markup differences require us to think about market structure,
transitory differences in markup are more likely the result of nominal or real rigidities.
In fact, if prices are adjusted infrequently, then shocks to firm-specific profitability change
the markup. Similarly, price setting frictions à la Calvo (1983) or Sheshinski and Weiss
(1977) give rise to transitory markup differences across firms even in response to common
aggregate shocks. Using the formula for price dispersion in Wooford (2011) yields a
markup dispersion of roughly

√
θ

1−θπ, where 1−θ is the probability to adjust prices and π

is the inflation rate per period. The average annual inflation rates are 3%, 6%, 23% and
9% for Germany, Chile, Colombia, and Indonesia, respectively computed over the periods
we have data for. If prices are adjusted at equal frequency across countries, different
average inflation rates can account for some of the observed markup differences.9

Yet, there are other well known factors that can add to the dispersion of markups, like

9At quarterly frequency, suppose θ = 1/4 so that the half life of price adjustments is four quarters.
After computing quarterly inflation rates, we obtain markup dispersion of 0.03, 0.05, 0.18 and 0.08 for
Germany, Chile, Colombia, and Indonesia.
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idiosyncratic profitability shocks (demand and productivity). In fact, while the disper-
sion of idiosyncratic profitability shocks is estimated to be 0.095 in Germany (Bachmann
and Bayer, 2013), an estimate for Colombia by Eslava et al. (2013) implies a shock dis-
persion of 0.24.10 If it takes time for firms to adjust their prices and/or quantities, these
differences in the stability of profitability must translate into larger markup dispersion.
Quantitatively, the differences in demand stability translate into sizable differences in
markup dispersion.11 Examples of such frictions are time-to-build, time-to-hire, or costly
customer accumulation, see, e.g., Gourio and Rudanko (2014).

Given the range of frictions involved and the strength of a simple price friction, it
is if anything surprising that the transitory markup dispersions are not much higher in
the developing economies. Of course, it remains an open question, why profitability is
so much less stable in developing economies.

4.3 Technology adjustment friction

While the markup dispersions reflect differences in how much plants produce relative
to their marginal cost curve, dispersion in the capital labor ratio reflect differences in
how plants produce, in how they combine capital and labor. It has been a longstanding
view that production technology is less moldable in the short run than in the long run.
In turn, this means that firms need to pay costs to adjust their capital intensity of pro-
duction. These costs may reflect the need to train workers and remodel the production
process when more capital is used. Such a putty-clay model of production (Johansen,
1959) can lead to dispersions in production technology when adjustment is not perfectly
synchronized across plants. In line with this view, Merz and Yashiv (2007) estimate that
it is substantially cheaper for a firm to adjust both capital and labor simultaneously than
doing this sequentially. This view of a rigidity in changing the capital-labor mix at the
plant level has important further implications.

First, it implies that idiosyncratic differences in factor prices can lead to long-lasting
differences in production technology. For example, a capital-intense production technol-

10In similar vein, we have estimated the dispersion in TFP growth across countries. In particular, we
construct Solow residuals. Taking out four-digit industry and year fixed effects, the standard deviations of
first differences in Solow residuals are 0.13, 0.40, 0.34, 0.49 for Germany, Chile, Colombia, and Indonesia.
The order of standard deviations perfectly matches the order of estimated markup dispersions.

11Suppose firms face a downward-sloping (CES) demand curve, p = 1
1−ξ

zξy−ξ, where z is stochastic
profitability. Assume firms face constant unit costs c = 1. If firms choose how much to produce, y, before
observing shocks to z, the profit maximizing policy is y = E[zξ]1/ξ. Realized markups are py

cy
= 1

1−ξ
zξ

E[zξ]
and the standard deviation of log markups is ξ/(1 − ξ)σz, where σz is the dispersion of innovations to
z. If we set ξ = 1/4 (average gross markup of 1.33), the profitability shock dispersions for Germany and
Colombia imply markup dispersions of 0.03 and 0.08, respectively.
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Table 4: Persistent technology dispersion by firm/plant characteristics

Markups Size Age

Bottom Top Bottom Top
Quintile Quintile Quintile Quintile Young Old

DE 0.545 0.622 0.610 0.509 n.a. n.a.
(0.010) (0.010) (0.009) (0.011)

CL 0.646 0.743 0.808 0.658 n.a. n.a.
(0.052) (0.063) (0.070) (0.050)

CO 0.505 0.689 0.815 0.736 0.767 0.771
(0.028) (0.053) (0.049) (0.050) (0.092) (0.046)

ID 0.763 0.831 0.855 0.847 0.794 0.839
(0.027) (0.031) (0.029) (0.029) (0.046) (0.032)

Notes: Bottom (top) markup quintile: firm/plant average markup below the 20th percentile (above the
80th percentile). Old (young): Plant age below 4 years (above 15 years). Bottom (top) size quintile:
firm/plant average employment below the 20th percentile (above 80th percentile). The micro data from
Germany and Chile do not include age. See notes of Table 1 for further explanation.

ogy is more expensive for a financially constrained firm than for an unconstrained one.
The constrained firm would not adopt an otherwise more efficient technology (c.f. Midri-
gan and Xu, 2014). Technology adoption costs in combination with financial frictions
may explain persistent technology dispersion.

Second, if technology dispersion comes from active adjustment choices, then not all
firms have the same incentive to adjust their technology. In particular, plants with
more market power can offload a larger share of the costs associated with operating a
suboptimal technology onto their consumers. Hence, these plants will tolerate larger
deviations from cost-minimizing technologies.

To test these first two implication, we split the sample according to firm/plant char-
acteristics – age, size, and, importantly, a firm’s average markup – and compute again
the dispersions of the persistent component of capital intensity; see Table 4. What
stands out is the sample split along the average firm/plant markup. The highest markup
quintile exhibits between 30% and 60% higher capital intensity dispersions (in terms of
variances) than the lowest markup quintile. Yet, the capital-labor ratios tend to be more
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dispersed also among smaller plants, a group where a larger share can be expected to
be financially constrained. These results remain significant also when simultaneously
controlling for age, size, and market power, see Table 10 in the Appendix.

A third implication of technology adjustment costs is that simple OLS regressions of
capital intensity on relative factor prices will not identify the true technological long-run
elasticity of substitution but rather a short-run elasticity that combines adjustment costs,
potential effects of mean reversion in relative factor prices and the true technological
elasticity. First, plants will react sluggishly to changes in relative factor prices if there are
adjustment costs. Second and more importantly, forward-looking plants react stronger
to changes in factor prices which can be expected to be permanent or persistent than to
transitory changes.

We test this implication of technology adjustment costs using aggregate data from
the Penn World Table 8.0, see Feenstra et al. (2015). We use data from 99 countries
over the years 1956-2002. We regress the aggregate capital to labor ratio (in logs) on
the log wage to interest rate ratio. For total labor we use total hours worked. If hours
worked information is missing, we impute hours worked using the number of employed
and the average hours worked per employed in those countries with available data. We
run four regressions: First, a simple OLS regression, second a regression with country
fixed effects (within country), third a regression of country average capital intensities on
average wages (between country regression), and fourth and finally a regression, where
we instrument relative factor price changes by the country’s top marginal income tax on
domestic corporations. Again we control for country fixed effects.12

Table 5 summarizes the results of this estimation exercise. The OLS estimate of the
elasticity of substitution is 0.68, well below one. The within-country estimate is even
smaller at 0.43. However, this estimator identifies the elasticity from deviations from the
global trend and the country average. By construction this takes out most long-lived
differences and increases the importance of short lived fluctuations in relative factor
prices for the regression. A little unsurprisingly, when we regress capital intensities on
time-average factor prices of countries, the estimated elasticity is larger. This is in line
with the view that long-lived factor price changes translate much stronger into changes
in technology than short lived ones. This idea forms also the basis of our panel IV
estimation. We instrument relative factor prices by taxes. The tax series is constructed
from the World Tax Database available at http://www.bus.umich.edu/otpr/otpr/
default.asp. We use corporate tax rates because they should affect equilibrium interest

12Alternative estimation strategies in the literature exploit cointegration properties, cross-country
variation in factor price trends, or low-pass filters; see Chirinko (2008).
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rates without a strong direct impact on effective relative factor prices when capital can
be rented or debt financed. Importantly, our instrumental variable is highly persistent
and thus allows us to capture movements in factor prices that are long-lived. As a result,
our IV estimator should be closer to the long-run elasticity of substitution. In fact, the
estimated 1.28 is almost twice the OLS estimate and thrice the within-country estimate
even though we also control for country fixed effects here, too. Together with the fact,
that capital-intensity dispersion is higher among plants with more market power, this
finding supports the idea of substantive adjustment costs to technology.

Table 5: Estimation of long-run elasticity of substitution

Dependent variable: log (K/L)

OLS Within-Country Between-Country IV

log (W/R) 0.68∗∗∗ 0.43∗∗∗ 0.74∗∗∗ 1.28∗∗∗

Constant Yes Yes Yes Yes
Time trend Yes Yes No Yes
Country fixed effects No Yes No Yes
Instrument No No No Yes
R2 0.76 0.75 0.77 0.71
Countries 99 99 99 99
Observations 2,609 2,609 99 2,609

Notes: Regressions based on unbalanced panel of 99 countries for the years 1956-2002. The in-
strument is the country-level top marginal income tax rate on domestic corporations. The first
stage regression is significant at the 1% level. */**/*** denote 10/5/1% significance.

5 Conclusion

This paper documents a series of new facts about factor misallocation in Chile,
Colombia, Germany, and Indonesia. We show that misallocation at the firm/plant level
is persistent. We show that it is useful to understand misallocation as being composed
of a technological component (the capital intensity, i.e., how things are produced) and a
markup component (deviations from optimal size, i.e., how much a firm produces). We
show that these two components are roughly orthogonal.

Differences in capital intensities are most important in explaining factor productivity
dispersions and they are mostly persistent. At the same time, markup differences across
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firms are more important in terms of the productivity losses they generate. Markup
dispersions show both a strong persistent and a strong transitory component. Finally,
we have argued that competition and misallocation are intertwined in a complicated
fashion. An increase in competition leads to less technological mislallocation but might
create productivity losses from larger markup dispersion if the increase in competition
is not uniform across firms.

For future work it would be important to explore whether a dynamic model of tech-
nology choice is able to explain our empirical results not only qualitatively but also
quantitatively.
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A Appendix

A.1 Data description

German Firm Data: USTAN (Unternehmensbilanzstatistiken)

USTAN is itself a byproduct of the Bundesbank’s rediscounting and lending activity.
The Bundesbank had to assess the creditworthiness of all parties backing promissory
notes or bills of exchange put up for rediscounting (i.e., as collateral for overnight lend-
ing). It implemented this regulation by requiring the balance-sheet data of all parties
involved, which were then archived and collected; see Bachmann and Bayer (2013) for
details. Our initial sample consists of 1,846,473 firm-year observations. We remove ob-
servations from East German firms to avoid a break in the series in 1990. Finally, we
drop the following sectors: hospitality (hotels and restaurants), financial and insurance
institutions, public health and education. The resulting sample covers roughly 70% of
the West German real gross value added in the private non-financial business sector. In
particular, it includes Agriculture, Energy and Mining, Manufacturing, Construction,
and Trade.

Chilean Plant Data: ENIA (Encuesta Nacional Industrial Anual)

ENIA is collected by the National Institute of Statistics (Instituto Nacional de Es-
tadísticas, INE) and provides plant-level data from 1995 to 2007. ENIA contains in-
formation for all manufacturing plants with total employment of at least ten. For the
period under analysis, we have a sample of 70,217 plant-year observations. According
to INE, this sample covers about 50% of total manufacturing employment.

Colombian Plant Data: EAM (Encuesta Anual Manufacturera)

EAM is a plant-level survey conducted by the National Institute of Statistics (De-
partamento Administrativo Nacional de Estaditicas, DANE) for the period 1977 to 1991.
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The survey covers information for all manufacturing plants during 1977-1982; it only
contains data on plants with more than ten employees for 1983-1984, and from 1985,
small plants are included in small proportion. This results in more than 100,000 plant-
year observations.

Indonesian Plant Data: IBS (Survei Tahunan Perusahaan Industri Pengolahan)

IBS is the Indonesian Manufacturing Survey of Large and Medium Establishments,
provided by the National Institute of Statistics (Badan Pusat Statistik, BPS). The survey
covers all plants with 20 or more employees in the manufacturing sector. Given that the
capital stock is reported from 1988 onward, we exclude earlier years and focus on the
period 1988-2010, with more than 550,000 plant-year observations.

A.2 Sample selection

Starting from the raw data sets, we concentrate on describing the general cleaning
steps common to all countries, and we provide more information about country-specific
cleaning steps in Table 6.

To begin with, we remove observations where firms or plants report extraordinarily
large depreciation rates (e.g., due to fire or accident). The reason is that our dynamic
model does not capture such cases, and the perpetual inventory method (PIM) will
inaccurately measure the actual capital stock after such incidents occur.13 Next, for
those countries where current values of capital stock are not provided (Germany and
Colombia), we recompute capital stocks using the PIM. In conducting the PIM, we drop
a small amount of outliers, as explained in Section A.4. Further, we do not consider
observations where value-added, capital stock, or employment is non-positive or missing.

Moreover, we do not consider observations where firms/plants have missing values in
changes of employment (L), real capital (K) and real value-added (VA).14 To construct
capital productivity, we use the lagged value of capital stock, so we effectively discard
the first year of each micro unit. We remove outliers in the levels and in the relative
changes of employment, capital, value-added, and factor shares based on 3 standard

13In some cases in the ENIA, EAM, and IBS surveys, plants do not report depreciation conditional
on positive capital stock. In order to not lose these observations, we impute the depreciation by capital
type and two-digit industry, estimating a random effect model, using as the explanatory variable the
log-capital stock. To discard rare depreciation events, we drop observations whenever the reported
depreciation rate in structures (equipment) is above 40% (60%) yearly. Additionally, we do not consider
those cases where the reported depreciation is below 0.1% (1%) in structures (equipment), yearly.

14To construct measures of the real capital stock, we consider an index price by each capital type
(when available) using the information of gross fixed capital formation at current and constant prices
from the National Accounts, while, for value added, we use the GDP price deflator.
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deviations from the industry-year mean. In addition, we drop firm-/plant-year obser-
vations whenever the total factor expenditures share is either below 1/3 or above 3/2,
and whenever the firm/plant average total factor expenditure share is above 1. These
two cleaning steps should exclude from our analysis units which continuously report
unreasonably large markups or losses.

Finally, as our empirical results rely on a 5-year moving average filter, we do not
consider firm-/plant-year observations that have less than 5 consecutive years.

Table 6: Sample selection

Criterion/Country Germany Chile Colombia Indonesia
Initial sample 1,846,473 70,217 103,006 561,539
East Germany -115,201 – – –
Additional cleaning steps – – – -32,618
Imputation capital stock – – – +37,341
Rare depreciation events -54,280 -8,197 -6,176 -8,775
Outliers in PIM -73,784 – -3,960 –
Missing values -422,739 -21,813 -29,664 -303,663
Outliers in factor variables -176,232 -5,241 -10,343 -47,940
Less than 5 consecutive years -312,452 -16,459 -20,338 -93,440
Final sample 689,665 18,507 32,525 112,440

Notes: Missing values summarize the missing values of log value added, log capital, factor
shares and log changes in employment, capital and value added. Outliers in factor variables
are the sum of all identified outliers at log changes in employment, real capital and real value
added, and factor shares. For more information with respect to Additional cleaning steps
and Imputation of capital stock in Indonesia, see Section A.3.

A.3 Indonesia-specific adjustments

Before proceeding with the general cleaning steps applied to all data sets, we need
to implement some specific corrections to the Indonesian micro-data. In doing so, we
closely follow Blalock and Gertler (2009). First, we correct for mistakes due to data
keypunching. If the sum of the capital categories is a multiple of 10n (with n being an
integer) of the total reported capital, we replace the latter with the sum of the categories.
Second, we drop duplicate observations within the year (i.e., observations that have the
same values for all variables in the survey but differ in their plant identification number).
Third, we re-compute value added whenever their values are not consistent with the
formula provided by the BPS. Finally, the survey changed its industry classification from
ISIC Rev. 2 in 1998 to ISIC Rev. 3 in 1999 and to ISIC Rev. 4 in 2010. We use United
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Nations concordance tables to construct a consistent four-digit industry classification.
Further, the surveys from 1996 and 2006 provide information only on the aggregate

capital stock, yet not disaggregated by capital type (structure and equipment). To con-
struct an economically reasonable estimate of these variables for these years, we use the
average reported investment share and capital share of capital type in the preceding and
subsequent year, and impute it, multiplying the aggregate capital stock and investment
with the respective share.

Finally, we impute capital stock for plants whenever the survey presents missing
values for this variable in plants that reported information in previous and/or subsequent
years. Following Vial (2006), we impute capital by type (machinery, vehicles, land and
buildings), using the following regression by two-digit sectoral level:

logKit = β0 + β1 logKit−1 + θ lnXit−1 + µi + ϵit

where Kit is the capital stock of type i, µi are plant fixed effects and Xit−1 is a set of
explanatory variables (total output, input, employees, wages, fuel costs and expenditures
on materials, leasing, industrial services and taxes).15

A.4 Perpetual inventory method

Whenever the data set does not directly provide information on a firm’s/plant’s cap-
ital stock at current values (USTAN and EAM), we re-calculate capital stocks using the
perpetual inventory method (PIM), in order to obtain economically meaningful capital
series. In doing so, we follow Bachmann and Bayer (2014). To begin with, we compute
nominal investment series using the accumulation identity for capital stocks:

pIt Ii,k,t = Kr
i,k,t+1 −Kr

i,k,t +Dr
i,k,t,

where Kr
i,k,t and Dr

i,k,t are firm/plant i’s reported capital stock and depreciation for
capital type k at time t, respectively. Given that capital is reported at historical prices
and does not reflect the productive (real) level of capital stock, we apply the PIM to
construct economic real capital stock at each type of capital:

Ki,k,1 =
pI1

pIbase
Ka

i,k,1; Ki,k,t+1 = Ki,k,t(1− δi,k,t) +
pIt

pIbase
Ii,k,t, ∀t ∈ [0, T ]

15We evaluate the robustness of the imputation procedure using linear interpolation as an alternative
approach. Our empirical findings are robust to this alternative specification.
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where Ka
i,k,1 is the accounting value of the capital stock of type k for the first period in

which we observe the unit, pt
pbase

Ii,k,t is the real investment in capital k of firm/plant i

at time t and δi,k,t is the reported depreciation rate of capital k by firm/plant i at time
t.16

Even though the aforementioned procedure makes sure that values follow an eco-
nomically meaningful real capital stock series from the second period onward, it is not
clear whether the starting (accounting) input of capital at the unit, Ka

i,k,t, reflects the
productive real value. To account for and adjust the first-period value of capital, we use
an iterative approach. Specifically, we construct a time average factor ϕk for each type
of capital. In the first iteration step, the adjustment factor takes a value of 1, while
capital is equal to its balance-sheet value. That is, Kn

i,k,t =
pIt

pIbase
Ka

i,k,1 for n = 1. For
the subsequent iterations, capital is computed using PIM:

Kn
i,k,t+1 = Kn

i,k,t(1− δi,k,t) +
pt

pbase
Ii,k,t,

while the ajdustment factor is constructed using the ratio between the capital of consec-
utive iterations

ϕn
k =

1

NT

∑
i,t

Kn
i,k,t

Kn−1
i,k,t

.

Finally, the capital stock for the first period in which we observe the unit is adjusted by
the factor ϕn

k . We apply the procedure iteratively until ϕk converges17

Kn
i,k,1 = ϕn−1

k Kn−1
i,k,1.

16The reported depreciation rate is adjusted such that, on average, it coincides with the economic
depreciation rate given by the National Accounts. To deflate the investment series, we compute an
investment good price deflator from each country using the information of gross fixed capital formation
at current and constant prices from the National Accounts.

17We stop whenever the value of ϕk is below 1.1. At each iteration step, we drop 0.1% from the bottom
and top of the capital distribution. This cleaning step makes sure that we do not consider episodes of
extraordinary depreciation at the plant, which implies that reported depreciation rates (adjusted to have
the same average value from the National Accounts) do not reflect the capital stock given by the PIM.
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A.5 Robustness of empirical results

Table 7: Robustness: Transitory and persistent components (HP filtered) of factor pro-
ductivities, markups, and capital intensity

std(α̂L
it) std(α̂K

it ) ρ(α̂L
it, α̂

K
it ) std(ᾱL

it) std(ᾱK
it ) ρ(ᾱL

it, ᾱ
K
it )

Transitory Component (HP) Persistent Component (HP)

DE 0.062 0.113 0.352 0.236 0.471 -0.223

CL 0.208 0.286 0.542 0.293 0.614 -0.078

CO 0.142 0.168 0.551 0.273 0.682 -0.074

ID 0.267 0.386 0.483 0.354 0.737 0.013

std(µ̂it) std(κ̂it) ρ(µ̂it, κ̂it) std(µ̄it) std(κ̄it) ρ(µ̄it, κ̄it)

Transitory Component (HP) Persistent Component (HP)

DE 0.060 0.108 -0.157 0.175 0.572 0.055

CL 0.202 0.246 -0.078 0.240 0.701 -0.088

CO 0.135 0.149 -0.080 0.288 0.753 -0.507

ID 0.258 0.347 -0.100 0.310 0.813 -0.101

Notes: Labor productivity, aL
it, and capital productivity, aK

it , as defined in (1). Markups,
µit, and capital intensity, κit, as defined in (3) and (4). HP: results based on the de-
composing between transitory and persistent using an HP filter (λ = 6.25). Factor pro-
ductivities are demeaned by 4-digit industry and year and expressed in logs. Standard
errors are clustered standard errors at the firm/plant level. ρ denotes correlation. DE:
Germany, CL: Chile, CO: Colombia, ID: Indonesia.
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Table 8: Robustness: Weighted second moments of factor productivities, markups, and
capital intensity at different frequencies

std(α̂L
it) std(α̂K

it ) ρ(α̂L
it, α̂

K
it ) std(ᾱL

it) std(ᾱK
it ) ρ(ᾱL

it, ᾱ
K
it )

Transitory Component (5Y MA) Persistent Component (5Y MA)

DE 0.050 0.101 0.316 0.196 0.457 -0.176

CL 0.230 0.311 0.553 0.312 0.584 -0.085

CO 0.152 0.180 0.555 0.278 0.674 -0.076

ID 0.298 0.420 0.494 0.368 0.741 0.015

std(µ̂it) std(κ̂it) ρ(µ̂it, κ̂it) std(µ̄it) std(κ̄it) ρ(µ̄it, κ̄it)

Transitory Component (5Y MA) Persistent Component (5Y MA)

DE 0.052 0.090 -0.161 0.172 0.503 0.067

CL 0.221 0.269 -0.082 0.241 0.690 -0.086

CO 0.144 0.159 -0.086 0.289 0.748 -0.513

ID 0.288 0.373 -0.101 0.321 0.821 -0.104

Notes: Labor productivity, aL
it, and capital productivity, aK

it , as defined in (1). Markups, µit,
and capital intensity, κit, as defined in (3) and (4). Cross-sectional standard deviations (std)
and correlation (ρ) of transitory and persistent components. Transitory and persistent com-
ponents are obtained by applying a five year moving average filter (5Y MA). Moments are
weighted based on the value-added of the plant/firm. Variables under interest are demeaned
by 4-digit industry and year and expressed in logs. Standard errors in parentheses are clus-
tered standard errors at the firm/plant level. DE: Germany, CL: Chile, CO: Colombia, ID:
Indonesia.
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Table 9: Robustness: Transitory and persistent components (9 year moving average
filter) of factor productivities, markups, and capital intensity

std(α̂L
it) std(α̂K

it ) ρ(α̂L
it, α̂

K
it ) std(ᾱL

it) std(ᾱK
it ) ρ(ᾱL

it, ᾱ
K
it )

Transitory Component (9YMA) Persistent Component (9YMA)

DE 0.074 0.140 0.350 0.204 0.406 -0.203

CL 0.230 0.345 0.479 0.229 0.521 -0.111

CO 0.165 0.211 0.499 0.237 0.604 -0.079

ID 0.297 0.466 0.445 0.287 0.644 -0.046

std(µ̂it) std(κ̂it) ρ(µ̂it, κ̂it) std(µ̄it) std(κ̄it) ρ(µ̄it, κ̄it)

Transitory Component (9YMA) Persistent Component (9YMA)

DE 0.073 0.134 -0.184 0.157 0.490 0.089

CL 0.225 0.309 -0.111 0.193 0.593 -0.106

CO 0.158 0.193 -0.122 0.248 0.667 -0.487

ID 0.292 0.427 -0.130 0.253 0.716 -0.100

Notes: Labor productivity, aL
it, and capital productivity, aK

it , as defined in (1). Markups,
µit, and capital intensity, κit, as defined in (3) and (4). 9YMA: results based on the de-
composing between transitory and persistent using a 9 year moving average filter. Factor
productivities are demeaned by 4-digit industry and year and expressed in logs. Standard
errors are clustered standard errors at the firm/plant level. ρ denotes correlation. DE: Ger-
many, CL: Chile, CO: Colombia, ID: Indonesia.

29



Table 10: Robustness: Dispersion of capital intensity and markups

DE CL CO ID

ϵ2κ̄it

Log-Markup 0.024 0.042 0.097 0.033
(0.003) (0.016) (0.014) (0.010)

Log-Size -0.026 -0.072 -0.036 0.011
(0.003) (0.018) (0.018) (0.012)

Notes: The results are obtained based on a two-step procedure.
First, we remove cross-sectional differences in log capital inten-
sity (κit) that can be explained by the log of markups and size.
Second, the squared estimated residual based on the first stage,
(ϵ2κ̄it

), is regressed on the standarized log of markups and size.
Standard errors in parentheses are clustered standard errors at
the firm/plant level. DE: Germany, CL: Chile, CO: Colombia,
ID: Indonesia.
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A.6 Data treatment and dispersions

Table 11: Effects of data treatment steps on log-dispersions: Chile

TFPR Markups Technology

(py)it
(RitKit)α(WtLit)1−α

(py)it
RitKit+WtLit

RitKit
WtLit

[Ignore differences in capital composition]

Initial sample - - -
[0.662] [0.595] [1.227]

(1) Outliers in δ - - -
[0.622] [0.575] [1.086]

(2) Outliers in markups 0.450 0.421 0.855
[0.466] [0.409] [1.035]

(3) Outliers in growth of K, L, PY 0.430 0.405 0.820
[0.443] [0.391] [0.989]

(4) Outliers in αL and αK 0.393 0.362 0.802
[0.405] [0.346] [0.967]

(5) Five consecutive years 0.348 0.322 0.713
[0.378] [0.321] [0.906]

Notes: All moments are computed after trimming all log TFPR observations above the 99th percentile
and below the 1st percentile. We set α = 1/3. In brackets, we present log dispersions when ignoring
firm-/plant-year variation in composition of the capital stock across structures and equipment. In prac-
tice, that means we set the user cost of capital uniformly to 15% and conduct the PIM for aggregate
unit-specific capital stock series.
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Table 12: Effects of data treatment steps on log-dispersions: Colombia

TFPR Markups Technology

(py)it
(RitKit)α(WtLit)1−α

(py)it
RitKit+WtLit

RitKit
WtLit

[Ignore differences in capital composition]
Initial sample - - -

[0.494] [0.439] [1.082]

(1) Outliers in δ - - -
[0.486] [0.437] [1.065]

(2) Adjust K by PIM 0.456 0.511 0.899
[0.471] [0.516] [0.960]

(3) Outliers in markups 0.363 0.395 0.861
[0.368] [0.387] [0.892]

(4) Outliers in growth of K, L, PY 0.355 0.386 0.844
[0.358] [0.378] [0.864]

(5) Outliers in αL and αK 0.339 0.357 0.817
[0.341] [0.346] [0.833]

(6) Five consecutive years 0.312 0.324 0.739
[0.323] [0.325] [0.772]

See notes of Table 11 for details.
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Table 13: Effects of data treatment steps on log-dispersions: Indonesia

TFPR Markups Technology

(py)it
(RitKit)α(WtLit)1−α

(py)it
RitKit+WtLit

RitKit
WtLit

[Ignore differences in capital composition]
Initial sample - - -

[0.718] [0.699] [1.134]

(1) Outliers in δ - - -
[0.707] [0.686] [1.128]

(2) Outliers in markups 0.529 0.495 1.031
[0.528] [0.496] [1.048]

(3) Outliers in growth of K, L, PY 0.516 0.487 0.987
[0.509] [0.484] [0.983]

(4) Outliers in αL and αK 0.500 0.463 0.955
[0.493] [0.459] [0.950]

(5) Five consecutive years 0.453 0.424 0.869
[0.461] [0.432] [0.890]

See notes of Table 11 for details.
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A.7 Second-order approximation of aggregate productivity

Note that aggregate costs are given by C =
∫
ciyidi. Average costs, C/Y , defined

as aggregate costs relative to aggregate output, is an (inverse) measure of aggregate
TFP. Taking aggregate output Y as given and using (Assumption 3) and equation (6),
aggregate costs are

C = Y

[∫
c(k)1−ηzη−1m−ηdF (k, z,m)

] [∫
c(k)1−ηzη−1m1−ηdF (k, z,m)

] η
1−η

, (8)

where F is the joint distribution of firms across technology, demand shock, and markup.
The last term captures the aggregate price index. Aggregate unit costs, C/Y , are equiv-
alent to aggregate productivity, and after some reformulation, we obtain

log

(
C

Y

)
=− log(z̄) + log

[∫
c(k)1−η z̃η−1m̃−ηdF (k, z̃, m̃)

]
︸ ︷︷ ︸

gc

+
η

1− η
log

[∫
c(k)1−η z̃η−1m̃1−ηdF (k, z̃, m̃)

]
︸ ︷︷ ︸

gp

, (9)

where log(z̄) = E log(z), z̃ = z/z̄, log(m̄) = E log(m), and m̃ = m/m̄. To characterize
the effects of dispersion in technology, the demand shock, and the markup, we provide
a second-order approximation in log deviations. We define κ = log k, c̃(κ) = log(W +

R expκ)−log(f(expκ)), ζ̃ = log z̃, and µ̃ = log m̃. The approximation will be around the
cost-minimizing capital intensity κ∗ = argminκ c̃(κ), a unit demand shock ζ = log z = 0,
and a unit markup µ = logm = 0. Define

gc = log

∫
exp

{
hc
}
dF,

hc = (1− η)c̃(κ∗ + σ(κ− κ∗)) + (η − 1)σζ̃ − ησµ̃,

where we perturb (κ, ζ̃, µ̃) by σ. Evaluated at σ = 0, the first and second derivative of
hc w.r.t. σ are

∂hc

∂σ

∣∣∣
σ=0

= (1− η) c̃′(κ∗)︸ ︷︷ ︸
=0

(κ− κ∗) + (η − 1)ζ̃ − ηµ̃,

∂2hc

(∂σ)2

∣∣∣
σ=0

= (1− η)c̃′′(κ∗)(κ− κ∗)2.
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Note that σ = 0 implies exp{−gc} exp{hc} = 1, which we use to obtain

∂gc

∂σ

∣∣∣
σ=0

=

∫
[(η − 1)ζ̃ − ηµ̃]dF = 0,

∂2gc

(∂σ)2

∣∣∣
σ=0

= (η − 1)2V(ζ)− η(η − 1)Cov(ζ, µ) + η2V(µ)− (η − 1)c̃′′(κ∗)E[(κ− κ∗)2].

Analogously, we obtain

∂gp

∂σ

∣∣∣
σ=0

=

∫
[(η − 1)ζ̃ + (1− η)µ̃]dF = 0,

∂2gp

(∂σ)2

∣∣∣
σ=0

= (η − 1)2V(ζ)− (η − 1)2Cov(ζ, µ) + (η − 1)2V(µ)− (η − 1)c̃′′(κ∗)E[(κ− κ∗)2].

A second-order Taylor approximation of average unit costs yields

log

(
C

Y

)
− log

(
C

Y

)∗
≈ −E[ζ] +

∂2gc

(∂σ)2

∣∣∣
σ=0

− η

η − 1

∂2gp

(∂σ)2

∣∣∣
σ=0

= −E[ζ]− (η − 1)V(ζ) + ηV(µ) + c̃′′(κ∗)E[(κ− κ∗)2]. (10)

We further use
c̃′′(κ∗) =

∂2 log c(k)

(∂ log k)2

∣∣∣
k=k∗

=
1

2ρ
s∗(1− s∗),

where s∗ = Rk∗

W+Rk∗ is the capital expenditure share in the cost-minimizing optimum. In
addition, we approximate E[(κ−κ∗)2] by V(κ), which will bias downward the importance
of technology dispersions.

A.8 Aggregate productivity and market structure

We propose a stylized model that offers important insights: it shows that while an
increase in markup dispersion leads to a ceteris paribus decrease in productivity (and
welfare), an increased markup dispersion might be an epiphenomenon of an otherwise
welfare-improving change. Note, however, that this does not mean that the economy
could not be better off without markup dispersion. The first-best net markup is obviously
always zero on all goods, and thus, the first-best markup dispersion is always zero.

We consider the following market structure: Each firm produces a variety i as in our
baseline setup. We assume that the unit costs of production are normalized to unity.
The firm might face a competitor who produces a perfect substitute, with probability
λC and who also has costs of production equal to one. With probability λI the firm
innovates and increases its productivity, such that the unit costs of production are now
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c < 1. We assume that the innovation is drastic, such that c η
η−1 < 1.

This implies that the firm will set the markup equal to µ̄ = η
η−1 whenever it is

not facing a competitor or faces a competitor and has innovated; otherwise, the gross
markup is unity. The expected markup and the expected productvity in the economy
are therefore

E(µ) = λC(1− λI) + (1− λC(1− λI))µ̄ (11)

E(c) = (1− λI) + λIc, (12)

such that the average markup is increasing in innovation and decreasing in competition,
whereas the expected (unweighted) costs are decreasing in innovation. The variance of
markups is given by

V(µ) = λC(1− λI)(1− λC(1− λI))(µ̄− 1)2 (13)

and hence increasing in competition whenever λC(1−λI) < 1/2 and increasing in innova-
tion whenever λC(1−λI) > 1/2. In words, when the economy is not very innovative and
not very competitive, an increase in competition increases markup dispersions and thus
lowers aggregate productivity, but it also lowers average markups. When the economy
is very competitive but not very innovative, an increase in innovation increases markup
dispersions (and average markups), but it lowers production costs. Note that under
λC = 0, firms are monopolistically competitive. In this sense, especially for economies
(or sectors therein) that are almost perfectly competitive, i.e. λC(1−λI) > 1/2, caution
is warranted: higher markup dispersion may be a result of fast productivity growth and
fast productivity growth may be a result of low average productivity. In that sense,
large misallocation may be the consequence and not only the cause of low productivity
if developing countries are catching up.
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